This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by GG, 28-Jun-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsex4g.1 | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → 𝜒 ) | |
| cgsex4g.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cgsex4g | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex4g.1 | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → 𝜒 ) | |
| 2 | cgsex4g.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 4 | 3 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 | 4 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 6 | elisset | ⊢ ( 𝐴 ∈ 𝑅 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 7 | elisset | ⊢ ( 𝐵 ∈ 𝑆 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 9 | elisset | ⊢ ( 𝐶 ∈ 𝑅 → ∃ 𝑧 𝑧 = 𝐶 ) | |
| 10 | elisset | ⊢ ( 𝐷 ∈ 𝑆 → ∃ 𝑤 𝑤 = 𝐷 ) | |
| 11 | 9 10 | anim12i | ⊢ ( ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) → ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) |
| 12 | 8 11 | anim12i | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ∧ ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) ) |
| 13 | 19.42vv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) | |
| 14 | 13 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 15 | 19.41vv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) | |
| 16 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 17 | exdistrv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ↔ ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) | |
| 18 | 16 17 | anbi12i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ∧ ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) ) |
| 19 | 14 15 18 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ∧ ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) ) |
| 20 | 12 19 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 21 | 1 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 22 | 21 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 23 | 20 22 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 24 | 2 | biimprcd | ⊢ ( 𝜓 → ( 𝜒 → 𝜑 ) ) |
| 25 | 24 | ancld | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜒 ∧ 𝜑 ) ) ) |
| 26 | 25 | 2eximdv | ⊢ ( 𝜓 → ( ∃ 𝑧 ∃ 𝑤 𝜒 → ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 27 | 26 | 2eximdv | ⊢ ( 𝜓 → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 28 | 23 27 | syl5com | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 29 | 5 28 | impbid2 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |