This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cgsex4g as of 21-Mar-2025. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by GG, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsex4gOLD.1 | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ch ) |
|
| cgsex4gOLD.2 | |- ( ch -> ( ph <-> ps ) ) |
||
| Assertion | cgsex4gOLD | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ch /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex4gOLD.1 | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ch ) |
|
| 2 | cgsex4gOLD.2 | |- ( ch -> ( ph <-> ps ) ) |
|
| 3 | 2 | biimpa | |- ( ( ch /\ ph ) -> ps ) |
| 4 | 3 | exlimivv | |- ( E. z E. w ( ch /\ ph ) -> ps ) |
| 5 | 4 | exlimivv | |- ( E. x E. y E. z E. w ( ch /\ ph ) -> ps ) |
| 6 | elisset | |- ( A e. R -> E. x x = A ) |
|
| 7 | elisset | |- ( B e. S -> E. y y = B ) |
|
| 8 | 6 7 | anim12i | |- ( ( A e. R /\ B e. S ) -> ( E. x x = A /\ E. y y = B ) ) |
| 9 | exdistrv | |- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
|
| 10 | 8 9 | sylibr | |- ( ( A e. R /\ B e. S ) -> E. x E. y ( x = A /\ y = B ) ) |
| 11 | elisset | |- ( C e. R -> E. z z = C ) |
|
| 12 | elisset | |- ( D e. S -> E. w w = D ) |
|
| 13 | 11 12 | anim12i | |- ( ( C e. R /\ D e. S ) -> ( E. z z = C /\ E. w w = D ) ) |
| 14 | exdistrv | |- ( E. z E. w ( z = C /\ w = D ) <-> ( E. z z = C /\ E. w w = D ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( C e. R /\ D e. S ) -> E. z E. w ( z = C /\ w = D ) ) |
| 16 | 10 15 | anim12i | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) ) |
| 17 | eqeq1 | |- ( y = v -> ( y = B <-> v = B ) ) |
|
| 18 | 17 | anbi2d | |- ( y = v -> ( ( x = A /\ y = B ) <-> ( x = A /\ v = B ) ) ) |
| 19 | 18 | anbi1d | |- ( y = v -> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( ( x = A /\ v = B ) /\ ( z = C /\ w = D ) ) ) ) |
| 20 | 19 | exbidv | |- ( y = v -> ( E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. w ( ( x = A /\ v = B ) /\ ( z = C /\ w = D ) ) ) ) |
| 21 | 20 | notbid | |- ( y = v -> ( -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. E. w ( ( x = A /\ v = B ) /\ ( z = C /\ w = D ) ) ) ) |
| 22 | eqeq1 | |- ( z = v -> ( z = C <-> v = C ) ) |
|
| 23 | 22 | anbi1d | |- ( z = v -> ( ( z = C /\ w = D ) <-> ( v = C /\ w = D ) ) ) |
| 24 | 23 | anbi2d | |- ( z = v -> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( ( x = A /\ y = B ) /\ ( v = C /\ w = D ) ) ) ) |
| 25 | 24 | exbidv | |- ( z = v -> ( E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. w ( ( x = A /\ y = B ) /\ ( v = C /\ w = D ) ) ) ) |
| 26 | 25 | notbid | |- ( z = v -> ( -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. E. w ( ( x = A /\ y = B ) /\ ( v = C /\ w = D ) ) ) ) |
| 27 | 21 26 | alcomw | |- ( A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 28 | 27 | notbii | |- ( -. A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 29 | 2exnaln | |- ( E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. A. y A. z -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
|
| 30 | 2exnaln | |- ( E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> -. A. z A. y -. E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
|
| 31 | 28 29 30 | 3bitr4i | |- ( E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 32 | 31 | exbii | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> E. x E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 33 | 4exdistrv | |- ( E. x E. z E. y E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) ) |
|
| 34 | 32 33 | bitri | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) <-> ( E. x E. y ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D ) ) ) |
| 35 | 16 34 | sylibr | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 36 | 1 | 2eximi | |- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> E. z E. w ch ) |
| 37 | 36 | 2eximi | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> E. x E. y E. z E. w ch ) |
| 38 | 35 37 | syl | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> E. x E. y E. z E. w ch ) |
| 39 | 2 | biimprcd | |- ( ps -> ( ch -> ph ) ) |
| 40 | 39 | ancld | |- ( ps -> ( ch -> ( ch /\ ph ) ) ) |
| 41 | 40 | 2eximdv | |- ( ps -> ( E. z E. w ch -> E. z E. w ( ch /\ ph ) ) ) |
| 42 | 41 | 2eximdv | |- ( ps -> ( E. x E. y E. z E. w ch -> E. x E. y E. z E. w ( ch /\ ph ) ) ) |
| 43 | 38 42 | syl5com | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( ps -> E. x E. y E. z E. w ( ch /\ ph ) ) ) |
| 44 | 5 43 | impbid2 | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ch /\ ph ) <-> ps ) ) |