This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) (Revised by Mario Carneiro, 10-Oct-2016) (Proof shortened by Wolf Lammen, 22-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsex.2 | ⊢ 𝐴 ∈ V | ||
| ceqsex.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsex | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsex.2 | ⊢ 𝐴 ∈ V | |
| 3 | ceqsex.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | alinexa | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) | |
| 5 | 1 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜓 |
| 6 | 3 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 7 | 5 2 6 | ceqsal | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ¬ 𝜑 ) ↔ ¬ 𝜓 ) |
| 8 | 4 7 | bitr3i | ⊢ ( ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ¬ 𝜓 ) |
| 9 | 8 | con4bii | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |