This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018) (Revised by AV, 13-Jan-2020) (Proof shortened by AV, 1-May-2020) (Revised by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccat2s1fvw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatw2s1ass | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) = ( 𝑊 ++ ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) = ( 𝑊 ++ ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ) ) |
| 3 | 2 | fveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( ( 𝑊 ++ ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ) ‘ 𝐼 ) ) |
| 4 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 5 | s1cli | ⊢ 〈“ 𝑋 ”〉 ∈ Word V | |
| 6 | ccatws1clv | ⊢ ( 〈“ 𝑋 ”〉 ∈ Word V → ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ∈ Word V ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ∈ Word V ) |
| 8 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℕ0 ) | |
| 9 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 11 | nn0ge0 | ⊢ ( 𝐼 ∈ ℕ0 → 0 ≤ 𝐼 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ) → 0 ≤ 𝐼 ) |
| 13 | 0red | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 14 | nn0re | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
| 16 | 9 | nn0red | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ) → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 18 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 19 | 13 15 17 18 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ) → ( ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) ) |
| 20 | 12 19 | mpand | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) |
| 21 | 20 | 3impia | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
| 22 | elnnnn0b | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) | |
| 23 | 10 21 22 | sylanbrc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 24 | simp3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 < ( ♯ ‘ 𝑊 ) ) | |
| 25 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) | |
| 26 | 8 23 24 25 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 27 | ccatval1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ∈ Word V ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) | |
| 28 | 4 7 26 27 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ ( 〈“ 𝑋 ”〉 ++ 〈“ 𝑌 ”〉 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 29 | 3 28 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |