This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018) (Revised by AV, 13-Jan-2020) (Proof shortened by AV, 1-May-2020) (Revised by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccat2s1fvw | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` I ) = ( W ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatw2s1ass | |- ( W e. Word V -> ( ( W ++ <" X "> ) ++ <" Y "> ) = ( W ++ ( <" X "> ++ <" Y "> ) ) ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) = ( W ++ ( <" X "> ++ <" Y "> ) ) ) |
| 3 | 2 | fveq1d | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` I ) = ( ( W ++ ( <" X "> ++ <" Y "> ) ) ` I ) ) |
| 4 | simp1 | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> W e. Word V ) |
|
| 5 | s1cli | |- <" X "> e. Word _V |
|
| 6 | ccatws1clv | |- ( <" X "> e. Word _V -> ( <" X "> ++ <" Y "> ) e. Word _V ) |
|
| 7 | 5 6 | mp1i | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( <" X "> ++ <" Y "> ) e. Word _V ) |
| 8 | simp2 | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> I e. NN0 ) |
|
| 9 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( # ` W ) e. NN0 ) |
| 11 | nn0ge0 | |- ( I e. NN0 -> 0 <_ I ) |
|
| 12 | 11 | adantl | |- ( ( W e. Word V /\ I e. NN0 ) -> 0 <_ I ) |
| 13 | 0red | |- ( ( W e. Word V /\ I e. NN0 ) -> 0 e. RR ) |
|
| 14 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 15 | 14 | adantl | |- ( ( W e. Word V /\ I e. NN0 ) -> I e. RR ) |
| 16 | 9 | nn0red | |- ( W e. Word V -> ( # ` W ) e. RR ) |
| 17 | 16 | adantr | |- ( ( W e. Word V /\ I e. NN0 ) -> ( # ` W ) e. RR ) |
| 18 | lelttr | |- ( ( 0 e. RR /\ I e. RR /\ ( # ` W ) e. RR ) -> ( ( 0 <_ I /\ I < ( # ` W ) ) -> 0 < ( # ` W ) ) ) |
|
| 19 | 13 15 17 18 | syl3anc | |- ( ( W e. Word V /\ I e. NN0 ) -> ( ( 0 <_ I /\ I < ( # ` W ) ) -> 0 < ( # ` W ) ) ) |
| 20 | 12 19 | mpand | |- ( ( W e. Word V /\ I e. NN0 ) -> ( I < ( # ` W ) -> 0 < ( # ` W ) ) ) |
| 21 | 20 | 3impia | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> 0 < ( # ` W ) ) |
| 22 | elnnnn0b | |- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ 0 < ( # ` W ) ) ) |
|
| 23 | 10 21 22 | sylanbrc | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 24 | simp3 | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> I < ( # ` W ) ) |
|
| 25 | elfzo0 | |- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) |
|
| 26 | 8 23 24 25 | syl3anbrc | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> I e. ( 0 ..^ ( # ` W ) ) ) |
| 27 | ccatval1 | |- ( ( W e. Word V /\ ( <" X "> ++ <" Y "> ) e. Word _V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ ( <" X "> ++ <" Y "> ) ) ` I ) = ( W ` I ) ) |
|
| 28 | 4 7 26 27 | syl3anc | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( W ++ ( <" X "> ++ <" Y "> ) ) ` I ) = ( W ` I ) ) |
| 29 | 3 28 | eqtrd | |- ( ( W e. Word V /\ I e. NN0 /\ I < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` I ) = ( W ` I ) ) |