This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvreuw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrmo.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvrmo.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvrmo.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvreu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrmo.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvrmo.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvrmo.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) | |
| 5 | 4 | sb8eu | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑧 [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 6 | sban | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 7 | 6 | eubii | ⊢ ( ∃! 𝑧 [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 8 | clelsb1 | ⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) | |
| 9 | 8 | anbi1i | ⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 10 | 9 | eubii | ⊢ ( ∃! 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∃! 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 | |
| 12 | 1 | nfsb | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 14 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) | |
| 15 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 16 | sbequ | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 17 | 2 3 | sbie | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 18 | 16 17 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 20 | 13 14 19 | cbveu | ⊢ ( ∃! 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 21 | 10 20 | bitri | ⊢ ( ∃! 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 22 | 5 7 21 | 3bitri | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 23 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 24 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 25 | 22 23 24 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |