This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbveuw , cbveuvw when possible. (Contributed by NM, 25-Nov-1994) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbveu.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbveu.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbveu.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbveu | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveu.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbveu.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbveu.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 | sb8eu | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 5 | 2 3 | sbie | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 6 | 5 | eubii | ⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃! 𝑦 𝜓 ) |
| 7 | 4 6 | bitri | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |