This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvreuw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrmo.1 | |- F/ y ph |
|
| cbvrmo.2 | |- F/ x ps |
||
| cbvrmo.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvreu | |- ( E! x e. A ph <-> E! y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrmo.1 | |- F/ y ph |
|
| 2 | cbvrmo.2 | |- F/ x ps |
|
| 3 | cbvrmo.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | nfv | |- F/ z ( x e. A /\ ph ) |
|
| 5 | 4 | sb8eu | |- ( E! x ( x e. A /\ ph ) <-> E! z [ z / x ] ( x e. A /\ ph ) ) |
| 6 | sban | |- ( [ z / x ] ( x e. A /\ ph ) <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
|
| 7 | 6 | eubii | |- ( E! z [ z / x ] ( x e. A /\ ph ) <-> E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
| 8 | clelsb1 | |- ( [ z / x ] x e. A <-> z e. A ) |
|
| 9 | 8 | anbi1i | |- ( ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> ( z e. A /\ [ z / x ] ph ) ) |
| 10 | 9 | eubii | |- ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! z ( z e. A /\ [ z / x ] ph ) ) |
| 11 | nfv | |- F/ y z e. A |
|
| 12 | 1 | nfsb | |- F/ y [ z / x ] ph |
| 13 | 11 12 | nfan | |- F/ y ( z e. A /\ [ z / x ] ph ) |
| 14 | nfv | |- F/ z ( y e. A /\ ps ) |
|
| 15 | eleq1w | |- ( z = y -> ( z e. A <-> y e. A ) ) |
|
| 16 | sbequ | |- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
|
| 17 | 2 3 | sbie | |- ( [ y / x ] ph <-> ps ) |
| 18 | 16 17 | bitrdi | |- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
| 19 | 15 18 | anbi12d | |- ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) |
| 20 | 13 14 19 | cbveu | |- ( E! z ( z e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) ) |
| 21 | 10 20 | bitri | |- ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) ) |
| 22 | 5 7 21 | 3bitri | |- ( E! x ( x e. A /\ ph ) <-> E! y ( y e. A /\ ps ) ) |
| 23 | df-reu | |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
|
| 24 | df-reu | |- ( E! y e. A ps <-> E! y ( y e. A /\ ps ) ) |
|
| 25 | 22 23 24 | 3bitr4i | |- ( E! x e. A ph <-> E! y e. A ps ) |