This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-13 . (Revised by GG, 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen, 10-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvreuw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvreuw.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvreuw.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvreuw | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvreuw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvreuw.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvreuw.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 2 3 | cbvrexw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 𝜓 ) |
| 5 | 1 2 3 | cbvrmow | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐴 𝜓 ) |
| 6 | 4 5 | anbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝜓 ∧ ∃* 𝑦 ∈ 𝐴 𝜓 ) ) |
| 7 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 8 | reu5 | ⊢ ( ∃! 𝑦 ∈ 𝐴 𝜓 ↔ ( ∃ 𝑦 ∈ 𝐴 𝜓 ∧ ∃* 𝑦 ∈ 𝐴 𝜓 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |