This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcrcl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcrcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catcrcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| catcrcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | catcrcl2 | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcrcl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcrcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catcrcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | catcrcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | 1 2 3 | catcrcl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 6 | 1 4 5 2 | catchomfval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) ) |
| 7 | 6 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) ) |
| 8 | 3 7 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) | |
| 10 | 9 | elmpocl | ⊢ ( 𝐹 ∈ ( 𝑋 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |