This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcrcl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcrcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catcrcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | catcrcl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcrcl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcrcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catcrcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | elfvne0 | ⊢ ( 𝐹 ∈ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝐻 ≠ ∅ ) | |
| 5 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 6 | 4 5 | eleq2s | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 ≠ ∅ ) |
| 7 | fvprc | ⊢ ( ¬ 𝑈 ∈ V → ( CatCat ‘ 𝑈 ) = ∅ ) | |
| 8 | 1 7 | eqtrid | ⊢ ( ¬ 𝑈 ∈ V → 𝐶 = ∅ ) |
| 9 | fveq2 | ⊢ ( 𝐶 = ∅ → ( Hom ‘ 𝐶 ) = ( Hom ‘ ∅ ) ) | |
| 10 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 11 | 10 | str0 | ⊢ ∅ = ( Hom ‘ ∅ ) |
| 12 | 9 2 11 | 3eqtr4g | ⊢ ( 𝐶 = ∅ → 𝐻 = ∅ ) |
| 13 | 8 12 | syl | ⊢ ( ¬ 𝑈 ∈ V → 𝐻 = ∅ ) |
| 14 | 13 | necon1ai | ⊢ ( 𝐻 ≠ ∅ → 𝑈 ∈ V ) |
| 15 | 3 6 14 | 3syl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |