This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is an inverse of G " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcinv.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| catcinv.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catcinv.i | ⊢ 𝐼 = ( idfunc ‘ 𝑋 ) | ||
| catcinv.j | ⊢ 𝐽 = ( idfunc ‘ 𝑌 ) | ||
| Assertion | catcinv | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝐺 ∘func 𝐹 ) = 𝐼 ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcinv.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | catcinv.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | catcinv.i | ⊢ 𝐼 = ( idfunc ‘ 𝑋 ) | |
| 5 | catcinv.j | ⊢ 𝐽 = ( idfunc ‘ 𝑌 ) | |
| 6 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 7 | 1 3 4 6 | catcsect | ⊢ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| 8 | 1 3 5 6 | catcsect | ⊢ ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) |
| 9 | ancom | ⊢ ( ( 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) | |
| 10 | 8 9 | bianbi | ⊢ ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) |
| 11 | 7 10 | anbi12i | ⊢ ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ∧ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) |
| 12 | 2 6 | isinv2 | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 13 | anandi | ⊢ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝐺 ∘func 𝐹 ) = 𝐼 ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ∧ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝐺 ∘func 𝐹 ) = 𝐼 ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) |