This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for catccat . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catccatid.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catccatid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | catccatid | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catccatid.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catccatid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | 2 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 4 | eqidd | ⊢ ( 𝑈 ∈ 𝑉 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 5 | eqidd | ⊢ ( 𝑈 ∈ 𝑉 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 6 | 1 | fvexi | ⊢ 𝐶 ∈ V |
| 7 | 6 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
| 8 | biid | ⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ↔ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) | |
| 9 | id | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) | |
| 10 | 1 2 9 | catcbas | ⊢ ( 𝑈 ∈ 𝑉 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 11 | inss2 | ⊢ ( 𝑈 ∩ Cat ) ⊆ Cat | |
| 12 | 10 11 | eqsstrdi | ⊢ ( 𝑈 ∈ 𝑉 → 𝐵 ⊆ Cat ) |
| 13 | 12 | sselda | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ Cat ) |
| 14 | eqid | ⊢ ( idfunc ‘ 𝑥 ) = ( idfunc ‘ 𝑥 ) | |
| 15 | 14 | idfucl | ⊢ ( 𝑥 ∈ Cat → ( idfunc ‘ 𝑥 ) ∈ ( 𝑥 Func 𝑥 ) ) |
| 16 | 13 15 | syl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( idfunc ‘ 𝑥 ) ∈ ( 𝑥 Func 𝑥 ) ) |
| 17 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 ∈ 𝑉 ) | |
| 18 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 19 | simpr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 20 | 1 2 17 18 19 19 | catchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑥 Func 𝑥 ) ) |
| 21 | 16 20 | eleqtrrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( idfunc ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 22 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑈 ∈ 𝑉 ) | |
| 23 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 24 | simpr1l | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑤 ∈ 𝐵 ) | |
| 25 | simpr1r | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 26 | simpr31 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 27 | 1 2 22 18 24 25 | catchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑤 Func 𝑥 ) ) |
| 28 | 26 27 | eleqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑤 Func 𝑥 ) ) |
| 29 | 25 16 | syldan | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( idfunc ‘ 𝑥 ) ∈ ( 𝑥 Func 𝑥 ) ) |
| 30 | 1 2 22 23 24 25 25 28 29 | catcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( idfunc ‘ 𝑥 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( idfunc ‘ 𝑥 ) ∘func 𝑓 ) ) |
| 31 | 28 14 | cofulid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( idfunc ‘ 𝑥 ) ∘func 𝑓 ) = 𝑓 ) |
| 32 | 30 31 | eqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( idfunc ‘ 𝑥 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 33 | simpr2l | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 34 | simpr32 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 35 | 1 2 22 18 25 33 | catchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 36 | 34 35 | eleqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑥 Func 𝑦 ) ) |
| 37 | 1 2 22 23 25 25 33 29 36 | catcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( idfunc ‘ 𝑥 ) ) = ( 𝑔 ∘func ( idfunc ‘ 𝑥 ) ) ) |
| 38 | 36 14 | cofurid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∘func ( idfunc ‘ 𝑥 ) ) = 𝑔 ) |
| 39 | 37 38 | eqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( idfunc ‘ 𝑥 ) ) = 𝑔 ) |
| 40 | 28 36 | cofucl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∘func 𝑓 ) ∈ ( 𝑤 Func 𝑦 ) ) |
| 41 | 1 2 22 23 24 25 33 28 36 | catcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
| 42 | 1 2 22 18 24 33 | catchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑤 Func 𝑦 ) ) |
| 43 | 40 41 42 | 3eltr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 44 | simpr33 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 45 | simpr2r | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 46 | 1 2 22 18 33 45 | catchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 Func 𝑧 ) ) |
| 47 | 44 46 | eleqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ ∈ ( 𝑦 Func 𝑧 ) ) |
| 48 | 28 36 47 | cofuass | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘func 𝑔 ) ∘func 𝑓 ) = ( ℎ ∘func ( 𝑔 ∘func 𝑓 ) ) ) |
| 49 | 36 47 | cofucl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ∘func 𝑔 ) ∈ ( 𝑥 Func 𝑧 ) ) |
| 50 | 1 2 22 23 24 25 45 28 49 | catcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘func 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ℎ ∘func 𝑔 ) ∘func 𝑓 ) ) |
| 51 | 1 2 22 23 24 33 45 40 47 | catcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘func 𝑓 ) ) = ( ℎ ∘func ( 𝑔 ∘func 𝑓 ) ) ) |
| 52 | 48 50 51 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘func 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘func 𝑓 ) ) ) |
| 53 | 1 2 22 23 25 33 45 36 47 | catcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) = ( ℎ ∘func 𝑔 ) ) |
| 54 | 53 | oveq1d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ℎ ∘func 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 55 | 41 | oveq2d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘func 𝑓 ) ) ) |
| 56 | 52 54 55 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) ) |
| 57 | 3 4 5 7 8 21 32 39 43 56 | iscatd2 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) ) |