This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The definition of category df-cat does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. See setc2obas and setc2ohom for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa and its subsection. (Contributed by Zhi Wang, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cat1 | ⊢ ∃ 𝑐 ∈ Cat [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on | ⊢ 2o ∈ On | |
| 2 | eqid | ⊢ ( SetCat ‘ 2o ) = ( SetCat ‘ 2o ) | |
| 3 | 2 | setccat | ⊢ ( 2o ∈ On → ( SetCat ‘ 2o ) ∈ Cat ) |
| 4 | 1 3 | ax-mp | ⊢ ( SetCat ‘ 2o ) ∈ Cat |
| 5 | 1 | a1i | ⊢ ( ⊤ → 2o ∈ On ) |
| 6 | eqid | ⊢ ( Base ‘ ( SetCat ‘ 2o ) ) = ( Base ‘ ( SetCat ‘ 2o ) ) | |
| 7 | eqid | ⊢ ( Hom ‘ ( SetCat ‘ 2o ) ) = ( Hom ‘ ( SetCat ‘ 2o ) ) | |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | 8 | prid1 | ⊢ ∅ ∈ { ∅ , { ∅ } } |
| 10 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 11 | 9 10 | eleqtrri | ⊢ ∅ ∈ 2o |
| 12 | 11 | a1i | ⊢ ( ⊤ → ∅ ∈ 2o ) |
| 13 | p0ex | ⊢ { ∅ } ∈ V | |
| 14 | 13 | prid2 | ⊢ { ∅ } ∈ { ∅ , { ∅ } } |
| 15 | 14 10 | eleqtrri | ⊢ { ∅ } ∈ 2o |
| 16 | 15 | a1i | ⊢ ( ⊤ → { ∅ } ∈ 2o ) |
| 17 | 0nep0 | ⊢ ∅ ≠ { ∅ } | |
| 18 | 17 | a1i | ⊢ ( ⊤ → ∅ ≠ { ∅ } ) |
| 19 | 2 5 6 7 12 16 18 | cat1lem | ⊢ ( ⊤ → ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 20 | 19 | mptru | ⊢ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| 21 | fvexd | ⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( Base ‘ 𝑐 ) ∈ V ) | |
| 22 | fveq2 | ⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( Base ‘ 𝑐 ) = ( Base ‘ ( SetCat ‘ 2o ) ) ) | |
| 23 | fvexd | ⊢ ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) → ( Hom ‘ 𝑐 ) ∈ V ) | |
| 24 | fveq2 | ⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ ( SetCat ‘ 2o ) ) ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ ( SetCat ‘ 2o ) ) ) |
| 26 | oveq | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ) | |
| 27 | oveq | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( 𝑧 ℎ 𝑤 ) = ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) | |
| 28 | 26 27 | ineq12d | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) = ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ) |
| 29 | 28 | neeq1d | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ↔ ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ) ) |
| 30 | 29 | anbi1d | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 31 | 30 | 2rexbidv | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 32 | 31 | 2rexbidv | ⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 34 | pm4.61 | ⊢ ( ¬ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 35 | 34 | 2rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ¬ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 36 | rexnal2 | ⊢ ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ¬ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 37 | 35 36 | bitr3i | ⊢ ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 38 | 37 | 2rexbii | ⊢ ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 39 | rexnal2 | ⊢ ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 40 | 38 39 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 41 | 40 | a1i | ⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 42 | rexeq | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 43 | 42 | 2rexbidv | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 44 | 43 | rexbidv | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 45 | rexeq | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 46 | 45 | 2rexbidv | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 47 | rexeq | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 48 | 47 | rexeqbi1dv | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 49 | 44 46 48 | 3bitrd | ⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 51 | 33 41 50 | 3bitr3d | ⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 52 | 23 25 51 | sbcied2 | ⊢ ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) → ( [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 53 | 21 22 52 | sbcied2 | ⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 54 | 53 | rspcev | ⊢ ( ( ( SetCat ‘ 2o ) ∈ Cat ∧ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑐 ∈ Cat [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 55 | 4 20 54 | mp2an | ⊢ ∃ 𝑐 ∈ Cat [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |