This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. Lemma for cat1 . (Contributed by Zhi Wang, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cat1lem.1 | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| cat1lem.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| cat1lem.3 | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| cat1lem.4 | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| cat1lem.5 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) | ||
| cat1lem.6 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| cat1lem.7 | ⊢ ( 𝜑 → ∅ ≠ 𝑌 ) | ||
| Assertion | cat1lem | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cat1lem.1 | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | cat1lem.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | cat1lem.3 | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | cat1lem.4 | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | cat1lem.5 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) | |
| 6 | cat1lem.6 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 7 | cat1lem.7 | ⊢ ( 𝜑 → ∅ ≠ 𝑌 ) | |
| 8 | 1 2 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝜑 → 𝑈 = 𝐵 ) |
| 10 | 5 9 | eleqtrd | ⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
| 11 | 6 9 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 12 | f0 | ⊢ ∅ : ∅ ⟶ ∅ | |
| 13 | 1 2 4 5 5 | elsetchom | ⊢ ( 𝜑 → ( ∅ ∈ ( ∅ 𝐻 ∅ ) ↔ ∅ : ∅ ⟶ ∅ ) ) |
| 14 | 12 13 | mpbiri | ⊢ ( 𝜑 → ∅ ∈ ( ∅ 𝐻 ∅ ) ) |
| 15 | f0 | ⊢ ∅ : ∅ ⟶ 𝑌 | |
| 16 | 1 2 4 5 6 | elsetchom | ⊢ ( 𝜑 → ( ∅ ∈ ( ∅ 𝐻 𝑌 ) ↔ ∅ : ∅ ⟶ 𝑌 ) ) |
| 17 | 15 16 | mpbiri | ⊢ ( 𝜑 → ∅ ∈ ( ∅ 𝐻 𝑌 ) ) |
| 18 | inelcm | ⊢ ( ( ∅ ∈ ( ∅ 𝐻 ∅ ) ∧ ∅ ∈ ( ∅ 𝐻 𝑌 ) ) → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) | |
| 19 | 14 17 18 | syl2anc | ⊢ ( 𝜑 → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) |
| 20 | 7 | neneqd | ⊢ ( 𝜑 → ¬ ∅ = 𝑌 ) |
| 21 | 20 | intnand | ⊢ ( 𝜑 → ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) |
| 22 | oveq1 | ⊢ ( 𝑧 = ∅ → ( 𝑧 𝐻 𝑤 ) = ( ∅ 𝐻 𝑤 ) ) | |
| 23 | 22 | ineq2d | ⊢ ( 𝑧 = ∅ → ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ) |
| 24 | 23 | neeq1d | ⊢ ( 𝑧 = ∅ → ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ) ) |
| 25 | eqeq2 | ⊢ ( 𝑧 = ∅ → ( ∅ = 𝑧 ↔ ∅ = ∅ ) ) | |
| 26 | 25 | anbi1d | ⊢ ( 𝑧 = ∅ → ( ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ↔ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) |
| 27 | 26 | notbid | ⊢ ( 𝑧 = ∅ → ( ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ↔ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) |
| 28 | 24 27 | anbi12d | ⊢ ( 𝑧 = ∅ → ( ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) ) |
| 29 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( ∅ 𝐻 𝑤 ) = ( ∅ 𝐻 𝑌 ) ) | |
| 30 | 29 | ineq2d | ⊢ ( 𝑤 = 𝑌 → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ) |
| 31 | 30 | neeq1d | ⊢ ( 𝑤 = 𝑌 → ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) ) |
| 32 | eqeq2 | ⊢ ( 𝑤 = 𝑌 → ( ∅ = 𝑤 ↔ ∅ = 𝑌 ) ) | |
| 33 | 32 | anbi2d | ⊢ ( 𝑤 = 𝑌 → ( ( ∅ = ∅ ∧ ∅ = 𝑤 ) ↔ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) |
| 34 | 33 | notbid | ⊢ ( 𝑤 = 𝑌 → ( ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ↔ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) |
| 35 | 31 34 | anbi12d | ⊢ ( 𝑤 = 𝑌 → ( ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) ) |
| 36 | 28 35 | rspc2ev | ⊢ ( ( ∅ ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) → ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
| 37 | 10 11 19 21 36 | syl112anc | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
| 38 | oveq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 𝐻 𝑦 ) = ( ∅ 𝐻 𝑦 ) ) | |
| 39 | 38 | ineq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ) |
| 40 | 39 | neeq1d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ) ) |
| 41 | eqeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 = 𝑧 ↔ ∅ = 𝑧 ) ) | |
| 42 | 41 | anbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 43 | 42 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 44 | 40 43 | anbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 45 | 44 | 2rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 46 | oveq2 | ⊢ ( 𝑦 = ∅ → ( ∅ 𝐻 𝑦 ) = ( ∅ 𝐻 ∅ ) ) | |
| 47 | 46 | ineq1d | ⊢ ( 𝑦 = ∅ → ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ) |
| 48 | 47 | neeq1d | ⊢ ( 𝑦 = ∅ → ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ) ) |
| 49 | eqeq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 = 𝑤 ↔ ∅ = 𝑤 ) ) | |
| 50 | 49 | anbi2d | ⊢ ( 𝑦 = ∅ → ( ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
| 51 | 50 | notbid | ⊢ ( 𝑦 = ∅ → ( ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
| 52 | 48 51 | anbi12d | ⊢ ( 𝑦 = ∅ → ( ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) ) |
| 53 | 52 | 2rexbidv | ⊢ ( 𝑦 = ∅ → ( ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) ) |
| 54 | 45 53 | rspc2ev | ⊢ ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 55 | 10 10 37 54 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |