This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in Lang p. 53, without the axiom CAT 1, i.e., pairwise disjointness of hom-sets ( cat1 ). See setc2obas and setc2ohom for a counterexample. In contrast to definition 3.1 of Adamek p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ( ( Basec ) ), the morphisms "hom" ( ( Homc ) ) and the composition law "o" ( ( compc ) ). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in Adamek p. 21 and df-cid . (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cat | ⊢ Cat = { 𝑐 ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccat | ⊢ Cat | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | cbs | ⊢ Base | |
| 3 | 1 | cv | ⊢ 𝑐 |
| 4 | 3 2 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 5 | vb | ⊢ 𝑏 | |
| 6 | chom | ⊢ Hom | |
| 7 | 3 6 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
| 8 | vh | ⊢ ℎ | |
| 9 | cco | ⊢ comp | |
| 10 | 3 9 | cfv | ⊢ ( comp ‘ 𝑐 ) |
| 11 | vo | ⊢ 𝑜 | |
| 12 | vx | ⊢ 𝑥 | |
| 13 | 5 | cv | ⊢ 𝑏 |
| 14 | vg | ⊢ 𝑔 | |
| 15 | 12 | cv | ⊢ 𝑥 |
| 16 | 8 | cv | ⊢ ℎ |
| 17 | 15 15 16 | co | ⊢ ( 𝑥 ℎ 𝑥 ) |
| 18 | vy | ⊢ 𝑦 | |
| 19 | vf | ⊢ 𝑓 | |
| 20 | 18 | cv | ⊢ 𝑦 |
| 21 | 20 15 16 | co | ⊢ ( 𝑦 ℎ 𝑥 ) |
| 22 | 14 | cv | ⊢ 𝑔 |
| 23 | 20 15 | cop | ⊢ 〈 𝑦 , 𝑥 〉 |
| 24 | 11 | cv | ⊢ 𝑜 |
| 25 | 23 15 24 | co | ⊢ ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) |
| 26 | 19 | cv | ⊢ 𝑓 |
| 27 | 22 26 25 | co | ⊢ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) |
| 28 | 27 26 | wceq | ⊢ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 |
| 29 | 28 19 21 | wral | ⊢ ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 |
| 30 | 15 20 16 | co | ⊢ ( 𝑥 ℎ 𝑦 ) |
| 31 | 15 15 | cop | ⊢ 〈 𝑥 , 𝑥 〉 |
| 32 | 31 20 24 | co | ⊢ ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) |
| 33 | 26 22 32 | co | ⊢ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) |
| 34 | 33 26 | wceq | ⊢ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 |
| 35 | 34 19 30 | wral | ⊢ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 |
| 36 | 29 35 | wa | ⊢ ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) |
| 37 | 36 18 13 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) |
| 38 | 37 14 17 | wrex | ⊢ ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) |
| 39 | vz | ⊢ 𝑧 | |
| 40 | 39 | cv | ⊢ 𝑧 |
| 41 | 20 40 16 | co | ⊢ ( 𝑦 ℎ 𝑧 ) |
| 42 | 15 20 | cop | ⊢ 〈 𝑥 , 𝑦 〉 |
| 43 | 42 40 24 | co | ⊢ ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) |
| 44 | 22 26 43 | co | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) |
| 45 | 15 40 16 | co | ⊢ ( 𝑥 ℎ 𝑧 ) |
| 46 | 44 45 | wcel | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
| 47 | vw | ⊢ 𝑤 | |
| 48 | vk | ⊢ 𝑘 | |
| 49 | 47 | cv | ⊢ 𝑤 |
| 50 | 40 49 16 | co | ⊢ ( 𝑧 ℎ 𝑤 ) |
| 51 | 48 | cv | ⊢ 𝑘 |
| 52 | 20 40 | cop | ⊢ 〈 𝑦 , 𝑧 〉 |
| 53 | 52 49 24 | co | ⊢ ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) |
| 54 | 51 22 53 | co | ⊢ ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) |
| 55 | 42 49 24 | co | ⊢ ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) |
| 56 | 54 26 55 | co | ⊢ ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) |
| 57 | 15 40 | cop | ⊢ 〈 𝑥 , 𝑧 〉 |
| 58 | 57 49 24 | co | ⊢ ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) |
| 59 | 51 44 58 | co | ⊢ ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) |
| 60 | 56 59 | wceq | ⊢ ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) |
| 61 | 60 48 50 | wral | ⊢ ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) |
| 62 | 61 47 13 | wral | ⊢ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) |
| 63 | 46 62 | wa | ⊢ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) |
| 64 | 63 14 41 | wral | ⊢ ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) |
| 65 | 64 19 30 | wral | ⊢ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) |
| 66 | 65 39 13 | wral | ⊢ ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) |
| 67 | 66 18 13 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) |
| 68 | 38 67 | wa | ⊢ ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) |
| 69 | 68 12 13 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) |
| 70 | 69 11 10 | wsbc | ⊢ [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) |
| 71 | 70 8 7 | wsbc | ⊢ [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) |
| 72 | 71 5 4 | wsbc | ⊢ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) |
| 73 | 72 1 | cab | ⊢ { 𝑐 ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) } |
| 74 | 0 73 | wceq | ⊢ Cat = { 𝑐 ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) } |