This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma and df-coda . (Contributed by FL, 6-May-2007) (Revised by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-homa | ⊢ Homa = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | choma | ⊢ Homa | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑐 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 7 | 6 6 | cxp | ⊢ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) |
| 8 | 3 | cv | ⊢ 𝑥 |
| 9 | 8 | csn | ⊢ { 𝑥 } |
| 10 | chom | ⊢ Hom | |
| 11 | 5 10 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
| 12 | 8 11 | cfv | ⊢ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) |
| 13 | 9 12 | cxp | ⊢ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) |
| 14 | 3 7 13 | cmpt | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) |
| 15 | 1 2 14 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) |
| 16 | 0 15 | wceq | ⊢ Homa = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) |