This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The definition of category df-cat does not impose pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. See setc2obas and setc2ohom for a counterexample. For a version with pairwise disjoint hom-sets, see df-homa and its subsection. (Contributed by Zhi Wang, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cat1 | |- E. c e. Cat [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on | |- 2o e. On |
|
| 2 | eqid | |- ( SetCat ` 2o ) = ( SetCat ` 2o ) |
|
| 3 | 2 | setccat | |- ( 2o e. On -> ( SetCat ` 2o ) e. Cat ) |
| 4 | 1 3 | ax-mp | |- ( SetCat ` 2o ) e. Cat |
| 5 | 1 | a1i | |- ( T. -> 2o e. On ) |
| 6 | eqid | |- ( Base ` ( SetCat ` 2o ) ) = ( Base ` ( SetCat ` 2o ) ) |
|
| 7 | eqid | |- ( Hom ` ( SetCat ` 2o ) ) = ( Hom ` ( SetCat ` 2o ) ) |
|
| 8 | 0ex | |- (/) e. _V |
|
| 9 | 8 | prid1 | |- (/) e. { (/) , { (/) } } |
| 10 | df2o2 | |- 2o = { (/) , { (/) } } |
|
| 11 | 9 10 | eleqtrri | |- (/) e. 2o |
| 12 | 11 | a1i | |- ( T. -> (/) e. 2o ) |
| 13 | p0ex | |- { (/) } e. _V |
|
| 14 | 13 | prid2 | |- { (/) } e. { (/) , { (/) } } |
| 15 | 14 10 | eleqtrri | |- { (/) } e. 2o |
| 16 | 15 | a1i | |- ( T. -> { (/) } e. 2o ) |
| 17 | 0nep0 | |- (/) =/= { (/) } |
|
| 18 | 17 | a1i | |- ( T. -> (/) =/= { (/) } ) |
| 19 | 2 5 6 7 12 16 18 | cat1lem | |- ( T. -> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |
| 20 | 19 | mptru | |- E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) |
| 21 | fvexd | |- ( c = ( SetCat ` 2o ) -> ( Base ` c ) e. _V ) |
|
| 22 | fveq2 | |- ( c = ( SetCat ` 2o ) -> ( Base ` c ) = ( Base ` ( SetCat ` 2o ) ) ) |
|
| 23 | fvexd | |- ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) -> ( Hom ` c ) e. _V ) |
|
| 24 | fveq2 | |- ( c = ( SetCat ` 2o ) -> ( Hom ` c ) = ( Hom ` ( SetCat ` 2o ) ) ) |
|
| 25 | 24 | adantr | |- ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) -> ( Hom ` c ) = ( Hom ` ( SetCat ` 2o ) ) ) |
| 26 | oveq | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( x h y ) = ( x ( Hom ` ( SetCat ` 2o ) ) y ) ) |
|
| 27 | oveq | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( z h w ) = ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) |
|
| 28 | 26 27 | ineq12d | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( ( x h y ) i^i ( z h w ) ) = ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) ) |
| 29 | 28 | neeq1d | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( ( ( x h y ) i^i ( z h w ) ) =/= (/) <-> ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) ) ) |
| 30 | 29 | anbi1d | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 31 | 30 | 2rexbidv | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 32 | 31 | 2rexbidv | |- ( h = ( Hom ` ( SetCat ` 2o ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 33 | 32 | adantl | |- ( ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) /\ h = ( Hom ` ( SetCat ` 2o ) ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 34 | pm4.61 | |- ( -. ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |
|
| 35 | 34 | 2rexbii | |- ( E. z e. b E. w e. b -. ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |
| 36 | rexnal2 | |- ( E. z e. b E. w e. b -. ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> -. A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) |
|
| 37 | 35 36 | bitr3i | |- ( E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> -. A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) |
| 38 | 37 | 2rexbii | |- ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. b E. y e. b -. A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) |
| 39 | rexnal2 | |- ( E. x e. b E. y e. b -. A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) |
|
| 40 | 38 39 | bitri | |- ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) |
| 41 | 40 | a1i | |- ( ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) /\ h = ( Hom ` ( SetCat ` 2o ) ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) ) |
| 42 | rexeq | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
|
| 43 | 42 | 2rexbidv | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. y e. b E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. y e. b E. z e. b E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 44 | 43 | rexbidv | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. b E. y e. b E. z e. b E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 45 | rexeq | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. z e. b E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
|
| 46 | 45 | 2rexbidv | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. b E. y e. b E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 47 | rexeq | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. y e. b E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
|
| 48 | 47 | rexeqbi1dv | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. x e. b E. y e. b E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 49 | 44 46 48 | 3bitrd | |- ( b = ( Base ` ( SetCat ` 2o ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 50 | 49 | ad2antlr | |- ( ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) /\ h = ( Hom ` ( SetCat ` 2o ) ) ) -> ( E. x e. b E. y e. b E. z e. b E. w e. b ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 51 | 33 41 50 | 3bitr3d | |- ( ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) /\ h = ( Hom ` ( SetCat ` 2o ) ) ) -> ( -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 52 | 23 25 51 | sbcied2 | |- ( ( c = ( SetCat ` 2o ) /\ b = ( Base ` ( SetCat ` 2o ) ) ) -> ( [. ( Hom ` c ) / h ]. -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 53 | 21 22 52 | sbcied2 | |- ( c = ( SetCat ` 2o ) -> ( [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) <-> E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) ) |
| 54 | 53 | rspcev | |- ( ( ( SetCat ` 2o ) e. Cat /\ E. x e. ( Base ` ( SetCat ` 2o ) ) E. y e. ( Base ` ( SetCat ` 2o ) ) E. z e. ( Base ` ( SetCat ` 2o ) ) E. w e. ( Base ` ( SetCat ` 2o ) ) ( ( ( x ( Hom ` ( SetCat ` 2o ) ) y ) i^i ( z ( Hom ` ( SetCat ` 2o ) ) w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) -> E. c e. Cat [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) ) |
| 55 | 4 20 54 | mp2an | |- E. c e. Cat [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. -. A. x e. b A. y e. b A. z e. b A. w e. b ( ( ( x h y ) i^i ( z h w ) ) =/= (/) -> ( x = z /\ y = w ) ) |