This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardmin2 | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onintrab2 | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) | |
| 2 | 1 | biimpi | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) |
| 3 | 2 | adantr | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) |
| 4 | eloni | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On → Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) | |
| 5 | ordelss | ⊢ ( ( Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) | |
| 6 | 4 5 | sylan | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 7 | 1 6 | sylanb | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 8 | ssdomg | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On → ( 𝑦 ⊆ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ≼ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) | |
| 9 | 3 7 8 | sylc | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ≼ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 10 | onelon | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ∈ On ) | |
| 11 | 1 10 | sylanb | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ∈ On ) |
| 12 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 13 | nfcv | ⊢ Ⅎ 𝑥 ≺ | |
| 14 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } | |
| 15 | 14 | nfint | ⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 16 | 12 13 15 | nfbr | ⊢ Ⅎ 𝑥 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 17 | breq2 | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) | |
| 18 | 16 17 | onminsb | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 19 | sdomentr | ⊢ ( ( 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) → 𝐴 ≺ 𝑦 ) | |
| 20 | 18 19 | sylan | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) → 𝐴 ≺ 𝑦 ) |
| 21 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦 ) ) | |
| 22 | 21 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ( 𝑦 ∈ On ∧ 𝐴 ≺ 𝑦 ) ) |
| 23 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ⊆ On | |
| 24 | onnmin | ⊢ ( ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ⊆ On ∧ 𝑦 ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) | |
| 25 | 23 24 | mpan | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 26 | 22 25 | sylbir | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ≺ 𝑦 ) → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 27 | 26 | expcom | ⊢ ( 𝐴 ≺ 𝑦 → ( 𝑦 ∈ On → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 28 | 20 27 | syl | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) → ( 𝑦 ∈ On → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 29 | 28 | impancom | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 → ¬ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 30 | 29 | con2d | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ¬ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) ) |
| 31 | 30 | impancom | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → ( 𝑦 ∈ On → ¬ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) ) |
| 32 | 11 31 | mpd | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → ¬ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) |
| 33 | ensym | ⊢ ( 𝑦 ≈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≈ 𝑦 ) | |
| 34 | 32 33 | nsyl | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → ¬ 𝑦 ≈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 35 | brsdom | ⊢ ( 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ( 𝑦 ≼ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∧ ¬ 𝑦 ≈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) | |
| 36 | 9 34 35 | sylanbrc | ⊢ ( ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 37 | 36 | ralrimiva | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 → ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 38 | iscard | ⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) | |
| 39 | 2 37 38 | sylanbrc | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 → ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 40 | vprc | ⊢ ¬ V ∈ V | |
| 41 | inteq | ⊢ ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∅ → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∩ ∅ ) | |
| 42 | int0 | ⊢ ∩ ∅ = V | |
| 43 | 41 42 | eqtrdi | ⊢ ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∅ → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = V ) |
| 44 | 43 | eleq1d | ⊢ ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∅ → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ V ↔ V ∈ V ) ) |
| 45 | 40 44 | mtbiri | ⊢ ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∅ → ¬ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ V ) |
| 46 | fvex | ⊢ ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ∈ V | |
| 47 | eleq1 | ⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ∈ V ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ V ) ) | |
| 48 | 46 47 | mpbii | ⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ V ) |
| 49 | 45 48 | nsyl | ⊢ ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } = ∅ → ¬ ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 50 | 49 | necon2ai | ⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≠ ∅ ) |
| 51 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) | |
| 52 | 50 51 | sylib | ⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
| 53 | 39 52 | impbii | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |