This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardmin2 | |- ( E. x e. On A ~< x <-> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onintrab2 | |- ( E. x e. On A ~< x <-> |^| { x e. On | A ~< x } e. On ) |
|
| 2 | 1 | biimpi | |- ( E. x e. On A ~< x -> |^| { x e. On | A ~< x } e. On ) |
| 3 | 2 | adantr | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> |^| { x e. On | A ~< x } e. On ) |
| 4 | eloni | |- ( |^| { x e. On | A ~< x } e. On -> Ord |^| { x e. On | A ~< x } ) |
|
| 5 | ordelss | |- ( ( Ord |^| { x e. On | A ~< x } /\ y e. |^| { x e. On | A ~< x } ) -> y C_ |^| { x e. On | A ~< x } ) |
|
| 6 | 4 5 | sylan | |- ( ( |^| { x e. On | A ~< x } e. On /\ y e. |^| { x e. On | A ~< x } ) -> y C_ |^| { x e. On | A ~< x } ) |
| 7 | 1 6 | sylanb | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y C_ |^| { x e. On | A ~< x } ) |
| 8 | ssdomg | |- ( |^| { x e. On | A ~< x } e. On -> ( y C_ |^| { x e. On | A ~< x } -> y ~<_ |^| { x e. On | A ~< x } ) ) |
|
| 9 | 3 7 8 | sylc | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y ~<_ |^| { x e. On | A ~< x } ) |
| 10 | onelon | |- ( ( |^| { x e. On | A ~< x } e. On /\ y e. |^| { x e. On | A ~< x } ) -> y e. On ) |
|
| 11 | 1 10 | sylanb | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y e. On ) |
| 12 | nfcv | |- F/_ x A |
|
| 13 | nfcv | |- F/_ x ~< |
|
| 14 | nfrab1 | |- F/_ x { x e. On | A ~< x } |
|
| 15 | 14 | nfint | |- F/_ x |^| { x e. On | A ~< x } |
| 16 | 12 13 15 | nfbr | |- F/ x A ~< |^| { x e. On | A ~< x } |
| 17 | breq2 | |- ( x = |^| { x e. On | A ~< x } -> ( A ~< x <-> A ~< |^| { x e. On | A ~< x } ) ) |
|
| 18 | 16 17 | onminsb | |- ( E. x e. On A ~< x -> A ~< |^| { x e. On | A ~< x } ) |
| 19 | sdomentr | |- ( ( A ~< |^| { x e. On | A ~< x } /\ |^| { x e. On | A ~< x } ~~ y ) -> A ~< y ) |
|
| 20 | 18 19 | sylan | |- ( ( E. x e. On A ~< x /\ |^| { x e. On | A ~< x } ~~ y ) -> A ~< y ) |
| 21 | breq2 | |- ( x = y -> ( A ~< x <-> A ~< y ) ) |
|
| 22 | 21 | elrab | |- ( y e. { x e. On | A ~< x } <-> ( y e. On /\ A ~< y ) ) |
| 23 | ssrab2 | |- { x e. On | A ~< x } C_ On |
|
| 24 | onnmin | |- ( ( { x e. On | A ~< x } C_ On /\ y e. { x e. On | A ~< x } ) -> -. y e. |^| { x e. On | A ~< x } ) |
|
| 25 | 23 24 | mpan | |- ( y e. { x e. On | A ~< x } -> -. y e. |^| { x e. On | A ~< x } ) |
| 26 | 22 25 | sylbir | |- ( ( y e. On /\ A ~< y ) -> -. y e. |^| { x e. On | A ~< x } ) |
| 27 | 26 | expcom | |- ( A ~< y -> ( y e. On -> -. y e. |^| { x e. On | A ~< x } ) ) |
| 28 | 20 27 | syl | |- ( ( E. x e. On A ~< x /\ |^| { x e. On | A ~< x } ~~ y ) -> ( y e. On -> -. y e. |^| { x e. On | A ~< x } ) ) |
| 29 | 28 | impancom | |- ( ( E. x e. On A ~< x /\ y e. On ) -> ( |^| { x e. On | A ~< x } ~~ y -> -. y e. |^| { x e. On | A ~< x } ) ) |
| 30 | 29 | con2d | |- ( ( E. x e. On A ~< x /\ y e. On ) -> ( y e. |^| { x e. On | A ~< x } -> -. |^| { x e. On | A ~< x } ~~ y ) ) |
| 31 | 30 | impancom | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> ( y e. On -> -. |^| { x e. On | A ~< x } ~~ y ) ) |
| 32 | 11 31 | mpd | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> -. |^| { x e. On | A ~< x } ~~ y ) |
| 33 | ensym | |- ( y ~~ |^| { x e. On | A ~< x } -> |^| { x e. On | A ~< x } ~~ y ) |
|
| 34 | 32 33 | nsyl | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> -. y ~~ |^| { x e. On | A ~< x } ) |
| 35 | brsdom | |- ( y ~< |^| { x e. On | A ~< x } <-> ( y ~<_ |^| { x e. On | A ~< x } /\ -. y ~~ |^| { x e. On | A ~< x } ) ) |
|
| 36 | 9 34 35 | sylanbrc | |- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y ~< |^| { x e. On | A ~< x } ) |
| 37 | 36 | ralrimiva | |- ( E. x e. On A ~< x -> A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) |
| 38 | iscard | |- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } <-> ( |^| { x e. On | A ~< x } e. On /\ A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) ) |
|
| 39 | 2 37 38 | sylanbrc | |- ( E. x e. On A ~< x -> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |
| 40 | vprc | |- -. _V e. _V |
|
| 41 | inteq | |- ( { x e. On | A ~< x } = (/) -> |^| { x e. On | A ~< x } = |^| (/) ) |
|
| 42 | int0 | |- |^| (/) = _V |
|
| 43 | 41 42 | eqtrdi | |- ( { x e. On | A ~< x } = (/) -> |^| { x e. On | A ~< x } = _V ) |
| 44 | 43 | eleq1d | |- ( { x e. On | A ~< x } = (/) -> ( |^| { x e. On | A ~< x } e. _V <-> _V e. _V ) ) |
| 45 | 40 44 | mtbiri | |- ( { x e. On | A ~< x } = (/) -> -. |^| { x e. On | A ~< x } e. _V ) |
| 46 | fvex | |- ( card ` |^| { x e. On | A ~< x } ) e. _V |
|
| 47 | eleq1 | |- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> ( ( card ` |^| { x e. On | A ~< x } ) e. _V <-> |^| { x e. On | A ~< x } e. _V ) ) |
|
| 48 | 46 47 | mpbii | |- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> |^| { x e. On | A ~< x } e. _V ) |
| 49 | 45 48 | nsyl | |- ( { x e. On | A ~< x } = (/) -> -. ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |
| 50 | 49 | necon2ai | |- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> { x e. On | A ~< x } =/= (/) ) |
| 51 | rabn0 | |- ( { x e. On | A ~< x } =/= (/) <-> E. x e. On A ~< x ) |
|
| 52 | 50 51 | sylib | |- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> E. x e. On A ~< x ) |
| 53 | 39 52 | impbii | |- ( E. x e. On A ~< x <-> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |