This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| Assertion | cantnfval2 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 5 | cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 7 | 1 2 3 4 5 6 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 8 | ssid | ⊢ dom 𝐺 ⊆ dom 𝐺 | |
| 9 | 1 2 3 4 5 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 10 | 9 | simprd | ⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
| 11 | sseq1 | ⊢ ( 𝑢 = ∅ → ( 𝑢 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑢 = ∅ → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ ∅ ) ) | |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | 6 | seqom0g | ⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
| 15 | 13 14 | ax-mp | ⊢ ( 𝐻 ‘ ∅ ) = ∅ |
| 16 | 12 15 | eqtrdi | ⊢ ( 𝑢 = ∅ → ( 𝐻 ‘ 𝑢 ) = ∅ ) |
| 17 | fveq2 | ⊢ ( 𝑢 = ∅ → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) ) | |
| 18 | eqid | ⊢ seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 19 | 18 | seqom0g | ⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 20 | 13 19 | ax-mp | ⊢ ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ |
| 21 | 17 20 | eqtrdi | ⊢ ( 𝑢 = ∅ → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ∅ ) |
| 22 | 16 21 | eqeq12d | ⊢ ( 𝑢 = ∅ → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ∅ = ∅ ) ) |
| 23 | 11 22 | imbi12d | ⊢ ( 𝑢 = ∅ → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( ∅ ⊆ dom 𝐺 → ∅ = ∅ ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑢 = ∅ → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ dom 𝐺 → ∅ = ∅ ) ) ) ) |
| 25 | sseq1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 ⊆ dom 𝐺 ↔ 𝑣 ⊆ dom 𝐺 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑢 = 𝑣 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑣 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑢 = 𝑣 → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 29 | 25 28 | imbi12d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) ) ) |
| 31 | sseq1 | ⊢ ( 𝑢 = suc 𝑣 → ( 𝑢 ⊆ dom 𝐺 ↔ suc 𝑣 ⊆ dom 𝐺 ) ) | |
| 32 | fveq2 | ⊢ ( 𝑢 = suc 𝑣 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ suc 𝑣 ) ) | |
| 33 | fveq2 | ⊢ ( 𝑢 = suc 𝑣 → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑢 = suc 𝑣 → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) |
| 35 | 31 34 | imbi12d | ⊢ ( 𝑢 = suc 𝑣 → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
| 36 | 35 | imbi2d | ⊢ ( 𝑢 = suc 𝑣 → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) ) |
| 37 | sseq1 | ⊢ ( 𝑢 = dom 𝐺 → ( 𝑢 ⊆ dom 𝐺 ↔ dom 𝐺 ⊆ dom 𝐺 ) ) | |
| 38 | fveq2 | ⊢ ( 𝑢 = dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ dom 𝐺 ) ) | |
| 39 | fveq2 | ⊢ ( 𝑢 = dom 𝐺 → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) | |
| 40 | 38 39 | eqeq12d | ⊢ ( 𝑢 = dom 𝐺 → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) |
| 41 | 37 40 | imbi12d | ⊢ ( 𝑢 = dom 𝐺 → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) ) |
| 42 | 41 | imbi2d | ⊢ ( 𝑢 = dom 𝐺 → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) ) ) |
| 43 | eqid | ⊢ ∅ = ∅ | |
| 44 | 43 | 2a1i | ⊢ ( 𝜑 → ( ∅ ⊆ dom 𝐺 → ∅ = ∅ ) ) |
| 45 | sssucid | ⊢ 𝑣 ⊆ suc 𝑣 | |
| 46 | sstr | ⊢ ( ( 𝑣 ⊆ suc 𝑣 ∧ suc 𝑣 ⊆ dom 𝐺 ) → 𝑣 ⊆ dom 𝐺 ) | |
| 47 | 45 46 | mpan | ⊢ ( suc 𝑣 ⊆ dom 𝐺 → 𝑣 ⊆ dom 𝐺 ) |
| 48 | 47 | imim1i | ⊢ ( ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 49 | oveq2 | ⊢ ( ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) → ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) | |
| 50 | 6 | seqomsuc | ⊢ ( 𝑣 ∈ ω → ( 𝐻 ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) ) |
| 51 | 50 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( 𝐻 ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) ) |
| 52 | 18 | seqomsuc | ⊢ ( 𝑣 ∈ ω → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 53 | 52 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 54 | ssv | ⊢ dom 𝐺 ⊆ V | |
| 55 | ssv | ⊢ On ⊆ V | |
| 56 | resmpo | ⊢ ( ( dom 𝐺 ⊆ V ∧ On ⊆ V ) → ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) = ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) | |
| 57 | 54 55 56 | mp2an | ⊢ ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) = ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 58 | 57 | oveqi | ⊢ ( 𝑣 ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) |
| 59 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → suc 𝑣 ⊆ dom 𝐺 ) | |
| 60 | vex | ⊢ 𝑣 ∈ V | |
| 61 | 60 | sucid | ⊢ 𝑣 ∈ suc 𝑣 |
| 62 | 61 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → 𝑣 ∈ suc 𝑣 ) |
| 63 | 59 62 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → 𝑣 ∈ dom 𝐺 ) |
| 64 | 18 | cantnfvalf | ⊢ seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) : ω ⟶ On |
| 65 | 64 | ffvelcdmi | ⊢ ( 𝑣 ∈ ω → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ∈ On ) |
| 66 | 65 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ∈ On ) |
| 67 | ovres | ⊢ ( ( 𝑣 ∈ dom 𝐺 ∧ ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ∈ On ) → ( 𝑣 ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) | |
| 68 | 63 66 67 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( 𝑣 ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 69 | 58 68 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 70 | 53 69 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
| 71 | 51 70 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ↔ ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) ) |
| 72 | 49 71 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) |
| 73 | 72 | expr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( suc 𝑣 ⊆ dom 𝐺 → ( ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
| 74 | 73 | a2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
| 75 | 48 74 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
| 76 | 75 | expcom | ⊢ ( 𝑣 ∈ ω → ( 𝜑 → ( ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) ) |
| 77 | 76 | a2d | ⊢ ( 𝑣 ∈ ω → ( ( 𝜑 → ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) → ( 𝜑 → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) ) |
| 78 | 24 30 36 42 44 77 | finds | ⊢ ( dom 𝐺 ∈ ω → ( 𝜑 → ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) ) |
| 79 | 10 78 | mpcom | ⊢ ( 𝜑 → ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) |
| 80 | 8 79 | mpi | ⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) |
| 81 | 7 80 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) |