This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of TakeutiZaring p. 67. Lemma 2.17 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe1m | ⊢ ( 𝐴 ∈ On → ( 1o ↑o 𝐴 ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 1o ↑o 𝑥 ) = ( 1o ↑o ∅ ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑥 = ∅ → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o ∅ ) = 1o ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 1o ↑o 𝑥 ) = ( 1o ↑o 𝑦 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o 𝑦 ) = 1o ) ) |
| 5 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 1o ↑o 𝑥 ) = ( 1o ↑o suc 𝑦 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o suc 𝑦 ) = 1o ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 1o ↑o 𝑥 ) = ( 1o ↑o 𝐴 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ( 1o ↑o 𝐴 ) = 1o ) ) |
| 9 | 1on | ⊢ 1o ∈ On | |
| 10 | oe0 | ⊢ ( 1o ∈ On → ( 1o ↑o ∅ ) = 1o ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 1o ↑o ∅ ) = 1o |
| 12 | oesuc | ⊢ ( ( 1o ∈ On ∧ 𝑦 ∈ On ) → ( 1o ↑o suc 𝑦 ) = ( ( 1o ↑o 𝑦 ) ·o 1o ) ) | |
| 13 | 9 12 | mpan | ⊢ ( 𝑦 ∈ On → ( 1o ↑o suc 𝑦 ) = ( ( 1o ↑o 𝑦 ) ·o 1o ) ) |
| 14 | oveq1 | ⊢ ( ( 1o ↑o 𝑦 ) = 1o → ( ( 1o ↑o 𝑦 ) ·o 1o ) = ( 1o ·o 1o ) ) | |
| 15 | om1 | ⊢ ( 1o ∈ On → ( 1o ·o 1o ) = 1o ) | |
| 16 | 9 15 | ax-mp | ⊢ ( 1o ·o 1o ) = 1o |
| 17 | 14 16 | eqtrdi | ⊢ ( ( 1o ↑o 𝑦 ) = 1o → ( ( 1o ↑o 𝑦 ) ·o 1o ) = 1o ) |
| 18 | 13 17 | sylan9eq | ⊢ ( ( 𝑦 ∈ On ∧ ( 1o ↑o 𝑦 ) = 1o ) → ( 1o ↑o suc 𝑦 ) = 1o ) |
| 19 | 18 | ex | ⊢ ( 𝑦 ∈ On → ( ( 1o ↑o 𝑦 ) = 1o → ( 1o ↑o suc 𝑦 ) = 1o ) ) |
| 20 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o → ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 1o ) | |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 23 | oelim | ⊢ ( ( ( 1o ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 1o ) → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) | |
| 24 | 22 23 | mpan2 | ⊢ ( ( 1o ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
| 25 | 9 24 | mpan | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
| 26 | 21 25 | mpan | ⊢ ( Lim 𝑥 → ( 1o ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) ) |
| 27 | 26 | eqeq1d | ⊢ ( Lim 𝑥 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o ) ) |
| 28 | 0ellim | ⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) | |
| 29 | ne0i | ⊢ ( ∅ ∈ 𝑥 → 𝑥 ≠ ∅ ) | |
| 30 | iunconst | ⊢ ( 𝑥 ≠ ∅ → ∪ 𝑦 ∈ 𝑥 1o = 1o ) | |
| 31 | 28 29 30 | 3syl | ⊢ ( Lim 𝑥 → ∪ 𝑦 ∈ 𝑥 1o = 1o ) |
| 32 | 31 | eqeq2d | ⊢ ( Lim 𝑥 → ( ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 1o ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o ) ) |
| 33 | 27 32 | bitr4d | ⊢ ( Lim 𝑥 → ( ( 1o ↑o 𝑥 ) = 1o ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 1o ) ) |
| 34 | 20 33 | imbitrrid | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 1o ↑o 𝑦 ) = 1o → ( 1o ↑o 𝑥 ) = 1o ) ) |
| 35 | 2 4 6 8 11 19 34 | tfinds | ⊢ ( 𝐴 ∈ On → ( 1o ↑o 𝐴 ) = 1o ) |