This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ||
| cantnfs.a | |||
| cantnfs.b | |||
| cantnfcl.g | |||
| cantnfcl.f | |||
| Assertion | cantnfcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ||
| 2 | cantnfs.a | ||
| 3 | cantnfs.b | ||
| 4 | cantnfcl.g | ||
| 5 | cantnfcl.f | ||
| 6 | suppssdm | ||
| 7 | 1 2 3 | cantnfs | |
| 8 | 5 7 | mpbid | |
| 9 | 8 | simpld | |
| 10 | 6 9 | fssdm | |
| 11 | onss | ||
| 12 | 3 11 | syl | |
| 13 | 10 12 | sstrd | |
| 14 | epweon | ||
| 15 | wess | ||
| 16 | 13 14 15 | mpisyl | |
| 17 | ovexd | ||
| 18 | 4 | oion | |
| 19 | 17 18 | syl | |
| 20 | 8 | simprd | |
| 21 | 20 | fsuppimpd | |
| 22 | 4 | oien | |
| 23 | 17 16 22 | syl2anc | |
| 24 | enfii | ||
| 25 | 21 23 24 | syl2anc | |
| 26 | 19 25 | elind | |
| 27 | onfin2 | ||
| 28 | 26 27 | eleqtrrdi | |
| 29 | 16 28 | jca |