This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | ||
| zrrhm.0 | |||
| zrrhm.h | |||
| c0snmhm.z | |||
| Assertion | c0snghm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | ||
| 2 | zrrhm.0 | ||
| 3 | zrrhm.h | ||
| 4 | c0snmhm.z | ||
| 5 | grpmnd | ||
| 6 | grpmnd | ||
| 7 | id | ||
| 8 | 1 2 3 4 | c0snmhm | |
| 9 | 5 6 7 8 | syl3an | |
| 10 | ghmmhmb | ||
| 11 | 10 | eleq2d | |
| 12 | 11 | ancoms | |
| 13 | 12 | 3adant3 | |
| 14 | 9 13 | mpbird |