This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmmhmb | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm | ⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 6 | simpll | ⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Grp ) | |
| 7 | simplr | ⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑇 ∈ Grp ) | |
| 8 | 2 3 | mhmf | ⊢ ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑓 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑓 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 10 | 2 4 5 | mhmlin | ⊢ ( ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 12 | 11 | adantll | ⊢ ( ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 13 | 2 3 4 5 6 7 9 12 | isghmd | ⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ) ) |
| 15 | 1 14 | impbid2 | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) ) |
| 16 | 15 | eqrdv | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |