This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | |- B = ( Base ` T ) |
|
| zrrhm.0 | |- .0. = ( 0g ` S ) |
||
| zrrhm.h | |- H = ( x e. B |-> .0. ) |
||
| c0snmhm.z | |- Z = ( 0g ` T ) |
||
| Assertion | c0snghm | |- ( ( S e. Grp /\ T e. Grp /\ B = { Z } ) -> H e. ( T GrpHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | |- B = ( Base ` T ) |
|
| 2 | zrrhm.0 | |- .0. = ( 0g ` S ) |
|
| 3 | zrrhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | c0snmhm.z | |- Z = ( 0g ` T ) |
|
| 5 | grpmnd | |- ( S e. Grp -> S e. Mnd ) |
|
| 6 | grpmnd | |- ( T e. Grp -> T e. Mnd ) |
|
| 7 | id | |- ( B = { Z } -> B = { Z } ) |
|
| 8 | 1 2 3 4 | c0snmhm | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H e. ( T MndHom S ) ) |
| 9 | 5 6 7 8 | syl3an | |- ( ( S e. Grp /\ T e. Grp /\ B = { Z } ) -> H e. ( T MndHom S ) ) |
| 10 | ghmmhmb | |- ( ( T e. Grp /\ S e. Grp ) -> ( T GrpHom S ) = ( T MndHom S ) ) |
|
| 11 | 10 | eleq2d | |- ( ( T e. Grp /\ S e. Grp ) -> ( H e. ( T GrpHom S ) <-> H e. ( T MndHom S ) ) ) |
| 12 | 11 | ancoms | |- ( ( S e. Grp /\ T e. Grp ) -> ( H e. ( T GrpHom S ) <-> H e. ( T MndHom S ) ) ) |
| 13 | 12 | 3adant3 | |- ( ( S e. Grp /\ T e. Grp /\ B = { Z } ) -> ( H e. ( T GrpHom S ) <-> H e. ( T MndHom S ) ) ) |
| 14 | 9 13 | mpbird | |- ( ( S e. Grp /\ T e. Grp /\ B = { Z } ) -> H e. ( T GrpHom S ) ) |