This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0rhm.b | |- B = ( Base ` S ) |
|
| c0rhm.0 | |- .0. = ( 0g ` T ) |
||
| c0rhm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | c0rhm | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0rhm.b | |- B = ( Base ` S ) |
|
| 2 | c0rhm.0 | |- .0. = ( 0g ` T ) |
|
| 3 | c0rhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | eldifi | |- ( T e. ( Ring \ NzRing ) -> T e. Ring ) |
|
| 5 | 4 | anim2i | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( S e. Ring /\ T e. Ring ) ) |
| 6 | ringgrp | |- ( S e. Ring -> S e. Grp ) |
|
| 7 | ringgrp | |- ( T e. Ring -> T e. Grp ) |
|
| 8 | 4 7 | syl | |- ( T e. ( Ring \ NzRing ) -> T e. Grp ) |
| 9 | 1 2 3 | c0ghm | |- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |
| 10 | 6 8 9 | syl2an | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S GrpHom T ) ) |
| 11 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 12 | eqid | |- ( 1r ` T ) = ( 1r ` T ) |
|
| 13 | 11 2 12 | 0ring1eq0 | |- ( T e. ( Ring \ NzRing ) -> ( 1r ` T ) = .0. ) |
| 14 | 13 | eqcomd | |- ( T e. ( Ring \ NzRing ) -> .0. = ( 1r ` T ) ) |
| 15 | 14 | mpteq2dv | |- ( T e. ( Ring \ NzRing ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
| 16 | 15 | adantl | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
| 17 | 3 16 | eqtrid | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H = ( x e. B |-> ( 1r ` T ) ) ) |
| 18 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 19 | 18 | ringmgp | |- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 20 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 21 | 20 | ringmgp | |- ( T e. Ring -> ( mulGrp ` T ) e. Mnd ) |
| 22 | 4 21 | syl | |- ( T e. ( Ring \ NzRing ) -> ( mulGrp ` T ) e. Mnd ) |
| 23 | 18 1 | mgpbas | |- B = ( Base ` ( mulGrp ` S ) ) |
| 24 | 20 12 | ringidval | |- ( 1r ` T ) = ( 0g ` ( mulGrp ` T ) ) |
| 25 | eqid | |- ( x e. B |-> ( 1r ` T ) ) = ( x e. B |-> ( 1r ` T ) ) |
|
| 26 | 23 24 25 | c0mhm | |- ( ( ( mulGrp ` S ) e. Mnd /\ ( mulGrp ` T ) e. Mnd ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 27 | 19 22 26 | syl2an | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 28 | 17 27 | eqeltrd | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 29 | 10 28 | jca | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) |
| 30 | 18 20 | isrhm | |- ( H e. ( S RingHom T ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) |
| 31 | 5 29 30 | sylanbrc | |- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RingHom T ) ) |