This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blometi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| blometi.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| blometi.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | ||
| blometi.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| blometi.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| blometi.7 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| blometi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| blometi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | blometi | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝑃 𝐶 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blometi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | blometi.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | blometi.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 4 | blometi.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 5 | blometi.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | blometi.7 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 7 | blometi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 8 | blometi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 9 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 10 | 1 9 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ∈ 𝑋 ) |
| 11 | 7 10 | mp3an1 | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ∈ 𝑋 ) |
| 12 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 13 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 14 | 1 12 13 5 6 7 8 | nmblolbi | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
| 15 | 11 14 | sylan2 | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
| 16 | 15 | 3impb | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
| 17 | 1 2 6 | blof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 18 | 7 8 17 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐵 → 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 19 | 18 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ) |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ) |
| 21 | 18 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) |
| 23 | eqid | ⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) | |
| 24 | 2 23 13 4 | imsdval | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
| 25 | 8 24 | mp3an1 | ⊢ ( ( ( 𝑇 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝑇 ‘ 𝑄 ) ∈ 𝑌 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
| 26 | 20 22 25 | syl2anc | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
| 27 | eqid | ⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) | |
| 28 | 27 6 | bloln | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 29 | 7 8 28 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 30 | 1 9 23 27 | lnosub | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
| 31 | 7 30 | mp3anl1 | ⊢ ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
| 32 | 8 31 | mpanl1 | ⊢ ( ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
| 33 | 32 | 3impb | ⊢ ( ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
| 34 | 29 33 | syl3an1 | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) = ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) |
| 36 | 26 35 | eqtr4d | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
| 37 | 1 9 12 3 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑄 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) |
| 38 | 7 37 | mp3an1 | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑄 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) |
| 39 | 38 | 3adant1 | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑄 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑇 ) · ( 𝑃 𝐶 𝑄 ) ) = ( ( 𝑁 ‘ 𝑇 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 ( −𝑣 ‘ 𝑈 ) 𝑄 ) ) ) ) |
| 41 | 16 36 40 | 3brtr4d | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝑃 𝐶 𝑄 ) ) ) |