This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blometi.1 | |- X = ( BaseSet ` U ) |
|
| blometi.2 | |- Y = ( BaseSet ` W ) |
||
| blometi.8 | |- C = ( IndMet ` U ) |
||
| blometi.d | |- D = ( IndMet ` W ) |
||
| blometi.6 | |- N = ( U normOpOLD W ) |
||
| blometi.7 | |- B = ( U BLnOp W ) |
||
| blometi.u | |- U e. NrmCVec |
||
| blometi.w | |- W e. NrmCVec |
||
| Assertion | blometi | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( T ` P ) D ( T ` Q ) ) <_ ( ( N ` T ) x. ( P C Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blometi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | blometi.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | blometi.8 | |- C = ( IndMet ` U ) |
|
| 4 | blometi.d | |- D = ( IndMet ` W ) |
|
| 5 | blometi.6 | |- N = ( U normOpOLD W ) |
|
| 6 | blometi.7 | |- B = ( U BLnOp W ) |
|
| 7 | blometi.u | |- U e. NrmCVec |
|
| 8 | blometi.w | |- W e. NrmCVec |
|
| 9 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 10 | 1 9 | nvmcl | |- ( ( U e. NrmCVec /\ P e. X /\ Q e. X ) -> ( P ( -v ` U ) Q ) e. X ) |
| 11 | 7 10 | mp3an1 | |- ( ( P e. X /\ Q e. X ) -> ( P ( -v ` U ) Q ) e. X ) |
| 12 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 13 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 14 | 1 12 13 5 6 7 8 | nmblolbi | |- ( ( T e. B /\ ( P ( -v ` U ) Q ) e. X ) -> ( ( normCV ` W ) ` ( T ` ( P ( -v ` U ) Q ) ) ) <_ ( ( N ` T ) x. ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) ) |
| 15 | 11 14 | sylan2 | |- ( ( T e. B /\ ( P e. X /\ Q e. X ) ) -> ( ( normCV ` W ) ` ( T ` ( P ( -v ` U ) Q ) ) ) <_ ( ( N ` T ) x. ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) ) |
| 16 | 15 | 3impb | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( normCV ` W ) ` ( T ` ( P ( -v ` U ) Q ) ) ) <_ ( ( N ` T ) x. ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) ) |
| 17 | 1 2 6 | blof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y ) |
| 18 | 7 8 17 | mp3an12 | |- ( T e. B -> T : X --> Y ) |
| 19 | 18 | ffvelcdmda | |- ( ( T e. B /\ P e. X ) -> ( T ` P ) e. Y ) |
| 20 | 19 | 3adant3 | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( T ` P ) e. Y ) |
| 21 | 18 | ffvelcdmda | |- ( ( T e. B /\ Q e. X ) -> ( T ` Q ) e. Y ) |
| 22 | 21 | 3adant2 | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( T ` Q ) e. Y ) |
| 23 | eqid | |- ( -v ` W ) = ( -v ` W ) |
|
| 24 | 2 23 13 4 | imsdval | |- ( ( W e. NrmCVec /\ ( T ` P ) e. Y /\ ( T ` Q ) e. Y ) -> ( ( T ` P ) D ( T ` Q ) ) = ( ( normCV ` W ) ` ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) ) |
| 25 | 8 24 | mp3an1 | |- ( ( ( T ` P ) e. Y /\ ( T ` Q ) e. Y ) -> ( ( T ` P ) D ( T ` Q ) ) = ( ( normCV ` W ) ` ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) ) |
| 26 | 20 22 25 | syl2anc | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( T ` P ) D ( T ` Q ) ) = ( ( normCV ` W ) ` ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) ) |
| 27 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
| 28 | 27 6 | bloln | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
| 29 | 7 8 28 | mp3an12 | |- ( T e. B -> T e. ( U LnOp W ) ) |
| 30 | 1 9 23 27 | lnosub | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) /\ ( P e. X /\ Q e. X ) ) -> ( T ` ( P ( -v ` U ) Q ) ) = ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) |
| 31 | 7 30 | mp3anl1 | |- ( ( ( W e. NrmCVec /\ T e. ( U LnOp W ) ) /\ ( P e. X /\ Q e. X ) ) -> ( T ` ( P ( -v ` U ) Q ) ) = ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) |
| 32 | 8 31 | mpanl1 | |- ( ( T e. ( U LnOp W ) /\ ( P e. X /\ Q e. X ) ) -> ( T ` ( P ( -v ` U ) Q ) ) = ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) |
| 33 | 32 | 3impb | |- ( ( T e. ( U LnOp W ) /\ P e. X /\ Q e. X ) -> ( T ` ( P ( -v ` U ) Q ) ) = ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) |
| 34 | 29 33 | syl3an1 | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( T ` ( P ( -v ` U ) Q ) ) = ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) |
| 35 | 34 | fveq2d | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( normCV ` W ) ` ( T ` ( P ( -v ` U ) Q ) ) ) = ( ( normCV ` W ) ` ( ( T ` P ) ( -v ` W ) ( T ` Q ) ) ) ) |
| 36 | 26 35 | eqtr4d | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( T ` P ) D ( T ` Q ) ) = ( ( normCV ` W ) ` ( T ` ( P ( -v ` U ) Q ) ) ) ) |
| 37 | 1 9 12 3 | imsdval | |- ( ( U e. NrmCVec /\ P e. X /\ Q e. X ) -> ( P C Q ) = ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) |
| 38 | 7 37 | mp3an1 | |- ( ( P e. X /\ Q e. X ) -> ( P C Q ) = ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) |
| 39 | 38 | 3adant1 | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( P C Q ) = ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) |
| 40 | 39 | oveq2d | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( N ` T ) x. ( P C Q ) ) = ( ( N ` T ) x. ( ( normCV ` U ) ` ( P ( -v ` U ) Q ) ) ) ) |
| 41 | 16 36 40 | 3brtr4d | |- ( ( T e. B /\ P e. X /\ Q e. X ) -> ( ( T ` P ) D ( T ` Q ) ) <_ ( ( N ` T ) x. ( P C Q ) ) ) |