This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mopni.1 | |- J = ( MetOpen ` D ) |
|
| blcld.3 | |- S = { z e. X | ( P D z ) <_ R } |
||
| Assertion | blcls | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
| 2 | blcld.3 | |- S = { z e. X | ( P D z ) <_ R } |
|
| 3 | 1 2 | blcld | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> S e. ( Clsd ` J ) ) |
| 4 | blssm | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ X ) |
|
| 5 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( z e. ( P ( ball ` D ) R ) <-> ( z e. X /\ ( P D z ) < R ) ) ) |
|
| 6 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ z e. X ) -> ( P D z ) e. RR* ) |
|
| 7 | 6 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ z e. X ) -> ( P D z ) e. RR* ) |
| 8 | 7 | 3adantl3 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ z e. X ) -> ( P D z ) e. RR* ) |
| 9 | simpl3 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ z e. X ) -> R e. RR* ) |
|
| 10 | xrltle | |- ( ( ( P D z ) e. RR* /\ R e. RR* ) -> ( ( P D z ) < R -> ( P D z ) <_ R ) ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ z e. X ) -> ( ( P D z ) < R -> ( P D z ) <_ R ) ) |
| 12 | 11 | expimpd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( z e. X /\ ( P D z ) < R ) -> ( P D z ) <_ R ) ) |
| 13 | 5 12 | sylbid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( z e. ( P ( ball ` D ) R ) -> ( P D z ) <_ R ) ) |
| 14 | 13 | ralrimiv | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> A. z e. ( P ( ball ` D ) R ) ( P D z ) <_ R ) |
| 15 | ssrab | |- ( ( P ( ball ` D ) R ) C_ { z e. X | ( P D z ) <_ R } <-> ( ( P ( ball ` D ) R ) C_ X /\ A. z e. ( P ( ball ` D ) R ) ( P D z ) <_ R ) ) |
|
| 16 | 4 14 15 | sylanbrc | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ { z e. X | ( P D z ) <_ R } ) |
| 17 | 16 2 | sseqtrrdi | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ S ) |
| 18 | eqid | |- U. J = U. J |
|
| 19 | 18 | clsss2 | |- ( ( S e. ( Clsd ` J ) /\ ( P ( ball ` D ) R ) C_ S ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ S ) |
| 20 | 3 17 19 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( cls ` J ) ` ( P ( ball ` D ) R ) ) C_ S ) |