This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 .) (Contributed by Mario Carneiro, 10-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcrpcl | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ) | |
| 2 | elfz3nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 3 | 2 | faccld | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 4 | fznn0sub | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ℕ0 ) | |
| 5 | elfznn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℕ0 ) | |
| 6 | faccl | ⊢ ( ( 𝑁 − 𝐾 ) ∈ ℕ0 → ( ! ‘ ( 𝑁 − 𝐾 ) ) ∈ ℕ ) | |
| 7 | faccl | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) | |
| 8 | nnmulcl | ⊢ ( ( ( ! ‘ ( 𝑁 − 𝐾 ) ) ∈ ℕ ∧ ( ! ‘ 𝐾 ) ∈ ℕ ) → ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( ( 𝑁 − 𝐾 ) ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ ) |
| 10 | 4 5 9 | syl2anc | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ ) |
| 11 | nnrp | ⊢ ( ( ! ‘ 𝑁 ) ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℝ+ ) | |
| 12 | nnrp | ⊢ ( ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ → ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℝ+ ) | |
| 13 | rpdivcl | ⊢ ( ( ( ! ‘ 𝑁 ) ∈ ℝ+ ∧ ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ ℝ+ ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( ! ‘ 𝑁 ) ∈ ℕ ∧ ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ ℝ+ ) |
| 15 | 3 10 14 | syl2anc | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ ℝ+ ) |
| 16 | 1 15 | eqeltrd | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ ) |