This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | bcth3 | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 5 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝐽 ∈ Top ) |
| 7 | ffvelcdm | ⊢ ( ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ 𝐽 ) | |
| 8 | elssuni | ⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ 𝐽 → ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | clsval2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑀 ‘ 𝑘 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
| 13 | 6 10 12 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
| 14 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → 𝑋 = ∪ 𝐽 ) |
| 16 | 13 15 | eqeq12d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 ↔ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 ) ) |
| 17 | difeq2 | ⊢ ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ∪ 𝐽 ∖ ∪ 𝐽 ) ) | |
| 18 | difid | ⊢ ( ∪ 𝐽 ∖ ∪ 𝐽 ) = ∅ | |
| 19 | 17 18 | eqtrdi | ⊢ ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ∅ ) |
| 20 | difss | ⊢ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 | |
| 21 | 11 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ∈ 𝐽 ) |
| 22 | 6 20 21 | sylancl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ∈ 𝐽 ) |
| 23 | elssuni | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ∪ 𝐽 ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ∪ 𝐽 ) |
| 25 | dfss4 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) | |
| 26 | 24 25 | sylib | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 27 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 28 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 29 | 28 | difexd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ∈ V ) |
| 30 | 29 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ∈ V ) |
| 31 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑘 ) ) | |
| 32 | 31 | difeq2d | ⊢ ( 𝑥 = 𝑘 → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
| 33 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) | |
| 34 | 32 33 | fvmptg | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ∈ V ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
| 35 | 27 30 34 | syl2anr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
| 36 | 15 | difeq1d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
| 37 | 35 36 | eqtrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 39 | 26 38 | eqtr4d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ) |
| 40 | 39 | eqeq1d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) = ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
| 41 | 19 40 | imbitrid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) = ∪ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
| 42 | 16 41 | sylbid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
| 43 | 42 | ralimdva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
| 44 | 4 43 | sylan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) ) |
| 45 | ffvelcdm | ⊢ ( ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑥 ∈ ℕ ) → ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) | |
| 46 | 14 | difeq1d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
| 48 | 11 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 49 | 5 48 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 50 | 47 49 | eqeltrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 ‘ 𝑥 ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 51 | 45 50 | sylan2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑀 : ℕ ⟶ 𝐽 ∧ 𝑥 ∈ ℕ ) ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 52 | 51 | anassrs | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 54 | 4 53 | sylan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 55 | 33 | fmpt | ⊢ ( ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 56 | 54 55 | sylib | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 57 | nne | ⊢ ( ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) | |
| 58 | 57 | ralbii | ⊢ ( ∀ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ) |
| 59 | ralnex | ⊢ ( ∀ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ↔ ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) | |
| 60 | 58 59 | bitr3i | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ ↔ ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) |
| 61 | 1 | bcth | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ≠ ∅ ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) |
| 62 | 61 | 3expia | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ ) ) |
| 63 | 62 | necon1bd | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ¬ ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) ≠ ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ ) ) |
| 64 | 60 63 | biimtrid | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ ) ) |
| 65 | 56 64 | syldan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ ) ) |
| 66 | difeq2 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ → ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ∪ 𝐽 ∖ ∅ ) ) | |
| 67 | 28 | difexd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V ) |
| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V ) |
| 69 | 68 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V ) |
| 70 | 33 | fnmpt | ⊢ ( ∀ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ∈ V → ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) Fn ℕ ) |
| 71 | fniunfv | ⊢ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) Fn ℕ → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) | |
| 72 | 69 70 71 | 3syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 73 | 35 | iuneq2dv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ 𝑘 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) ) |
| 74 | 32 | cbviunv | ⊢ ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ∪ 𝑘 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑘 ) ) |
| 75 | 73 74 | eqtr4di | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
| 76 | 72 75 | eqtr3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) |
| 77 | iundif2 | ⊢ ∪ 𝑥 ∈ ℕ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑋 ∖ ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ) | |
| 78 | 76 77 | eqtrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ( 𝑋 ∖ ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ) ) |
| 79 | ffn | ⊢ ( 𝑀 : ℕ ⟶ 𝐽 → 𝑀 Fn ℕ ) | |
| 80 | 79 | adantl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑀 Fn ℕ ) |
| 81 | fniinfv | ⊢ ( 𝑀 Fn ℕ → ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) = ∩ ran 𝑀 ) | |
| 82 | 80 81 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) = ∩ ran 𝑀 ) |
| 83 | 82 | difeq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ∩ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑋 ∖ ∩ ran 𝑀 ) ) |
| 84 | 14 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
| 85 | 84 | difeq1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( 𝑋 ∖ ∩ ran 𝑀 ) = ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) |
| 86 | 78 83 85 | 3eqtrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) |
| 87 | 86 | fveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) |
| 88 | 87 | difeq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) ) |
| 89 | 5 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → 𝐽 ∈ Top ) |
| 90 | 1nn | ⊢ 1 ∈ ℕ | |
| 91 | biidd | ⊢ ( 𝑘 = 1 → ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ↔ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ) ) | |
| 92 | fnfvelrn | ⊢ ( ( 𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ ran 𝑀 ) | |
| 93 | 80 92 | sylan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ ran 𝑀 ) |
| 94 | intss1 | ⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ran 𝑀 → ∩ ran 𝑀 ⊆ ( 𝑀 ‘ 𝑘 ) ) | |
| 95 | 93 94 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ∩ ran 𝑀 ⊆ ( 𝑀 ‘ 𝑘 ) ) |
| 96 | 95 10 | sstrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) |
| 97 | 96 | expcom | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ) |
| 98 | 91 97 | vtoclga | ⊢ ( 1 ∈ ℕ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) ) |
| 99 | 90 98 | ax-mp | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ∩ ran 𝑀 ⊆ ∪ 𝐽 ) |
| 100 | 11 | clsval2 | ⊢ ( ( 𝐽 ∈ Top ∧ ∩ ran 𝑀 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) ) |
| 101 | 89 99 100 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ ∩ ran 𝑀 ) ) ) ) |
| 102 | 88 101 | eqtr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) ) |
| 103 | dif0 | ⊢ ( ∪ 𝐽 ∖ ∅ ) = ∪ 𝐽 | |
| 104 | 103 84 | eqtr4id | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∪ 𝐽 ∖ ∅ ) = 𝑋 ) |
| 105 | 102 104 | eqeq12d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ∪ 𝐽 ∖ ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) ) = ( ∪ 𝐽 ∖ ∅ ) ↔ ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
| 106 | 66 105 | imbitrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
| 107 | 4 106 | sylan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran ( 𝑥 ∈ ℕ ↦ ( 𝑋 ∖ ( 𝑀 ‘ 𝑥 ) ) ) ) = ∅ → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
| 108 | 44 65 107 | 3syld | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) ) |
| 109 | 108 | 3impia | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( ( cls ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ ran 𝑀 ) = 𝑋 ) |