This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basdif0 | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ 𝐵 ∈ TopBases ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ { ∅ } ) | |
| 2 | undif1 | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝐵 ∪ { ∅ } ) | |
| 3 | 1 2 | sseqtrri | ⊢ 𝐵 ⊆ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) |
| 4 | snex | ⊢ { ∅ } ∈ V | |
| 5 | unexg | ⊢ ( ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ∧ { ∅ } ∈ V ) → ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) | |
| 6 | 4 5 | mpan2 | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases → ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) |
| 7 | ssexg | ⊢ ( ( 𝐵 ⊆ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∧ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) → 𝐵 ∈ V ) | |
| 8 | 3 6 7 | sylancr | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases → 𝐵 ∈ V ) |
| 9 | elex | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ∈ V ) | |
| 10 | indif1 | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∖ { ∅ } ) | |
| 11 | 10 | unieqi | ⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∖ { ∅ } ) |
| 12 | unidif0 | ⊢ ∪ ( ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∖ { ∅ } ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) | |
| 13 | 11 12 | eqtri | ⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
| 14 | 13 | sseq2i | ⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 16 | inss2 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 | |
| 17 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑦 ∈ { ∅ } ) | |
| 18 | elsni | ⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑦 = ∅ ) |
| 20 | 0ss | ⊢ ∅ ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) | |
| 21 | 19 20 | eqsstrdi | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑦 ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 22 | 16 21 | sstrid | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 23 | 22 | rgen | ⊢ ∀ 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
| 24 | ralunb | ⊢ ( ∀ 𝑦 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 25 | 23 24 | mpbiran | ⊢ ( ∀ 𝑦 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 26 | inundif | ⊢ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) = 𝐵 | |
| 27 | 26 | raleqi | ⊢ ( ∀ 𝑦 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 28 | 15 25 27 | 3bitr2i | ⊢ ( ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 29 | 28 | ralbii | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 30 | inss1 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 | |
| 31 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑥 ∈ { ∅ } ) | |
| 32 | elsni | ⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑥 = ∅ ) |
| 34 | 33 20 | eqsstrdi | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 35 | 30 34 | sstrid | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 36 | 35 | ralrimivw | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 37 | 36 | rgen | ⊢ ∀ 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
| 38 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 39 | 37 38 | mpbiran | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 40 | 26 | raleqi | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 41 | 29 39 40 | 3bitr2i | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 42 | 41 | a1i | ⊢ ( 𝐵 ∈ V → ( ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 43 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { ∅ } ) ∈ V ) | |
| 44 | isbasisg | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ V → ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝐵 ∈ V → ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 46 | isbasisg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 47 | 42 45 46 | 3bitr4d | ⊢ ( 𝐵 ∈ V → ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ 𝐵 ∈ TopBases ) ) |
| 48 | 8 9 47 | pm5.21nii | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ 𝐵 ∈ TopBases ) |