This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axregndlem2 | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axreg2 | ⊢ ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑤 ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 4 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 6 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) | |
| 7 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 8 | 7 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 9 | 6 8 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
| 10 | nfv | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 11 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 12 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 14 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) | |
| 15 | 14 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
| 16 | 15 6 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ∈ 𝑤 ) |
| 17 | 15 8 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ∈ 𝑦 ) |
| 18 | 17 | nfnd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ¬ 𝑧 ∈ 𝑦 ) |
| 19 | 16 18 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 20 | 13 19 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 21 | 9 20 | nfand | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 22 | 10 21 | nfexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 23 | 9 22 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 24 | simpr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → 𝑤 = 𝑥 ) | |
| 25 | 24 | eleq1d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 26 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) | |
| 27 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑥 ) | |
| 28 | 27 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑥 ) |
| 29 | 26 28 | nfeqd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑥 ) |
| 30 | 13 29 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 31 | 24 | eleq2d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥 ) ) |
| 32 | 31 | imbi1d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 33 | 30 32 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 34 | 25 33 | anbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 35 | 34 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 36 | 5 21 35 | cbvexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 38 | 25 37 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 39 | 38 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) ) |
| 40 | 5 23 39 | cbvald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 41 | 2 40 | mpbii | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 42 | 41 | 19.21bi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 43 | 42 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 44 | elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 45 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 46 | 44 45 | mtbii | ⊢ ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
| 47 | 46 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
| 48 | 47 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 49 | axregndlem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) | |
| 50 | 43 48 49 | pm2.61ii | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |