This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvexdw if possible. (Contributed by NM, 2-Jan-2002) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvald.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvald.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | ||
| cbvald.3 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) | ||
| Assertion | cbvexd | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvald.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvald.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | |
| 3 | cbvald.3 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) | |
| 4 | 2 | nfnd | ⊢ ( 𝜑 → Ⅎ 𝑦 ¬ 𝜓 ) |
| 5 | notbi | ⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) | |
| 6 | 3 5 | imbitrdi | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ) |
| 7 | 1 4 6 | cbvald | ⊢ ( 𝜑 → ( ∀ 𝑥 ¬ 𝜓 ↔ ∀ 𝑦 ¬ 𝜒 ) ) |
| 8 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) | |
| 9 | alnex | ⊢ ( ∀ 𝑦 ¬ 𝜒 ↔ ¬ ∃ 𝑦 𝜒 ) | |
| 10 | 7 8 9 | 3bitr3g | ⊢ ( 𝜑 → ( ¬ ∃ 𝑥 𝜓 ↔ ¬ ∃ 𝑦 𝜒 ) ) |
| 11 | 10 | con4bid | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |