This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of Suppes p. 54. This is trivial to prove from zfregfr and efrirr (see elirrvALT ), but this proof is direct from ax-reg . (Contributed by NM, 19-Aug-1993) Reduce axiom dependencies and make use of ax-reg directly. (Revised by BTernaryTau, 27-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr | ⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ) |
| 3 | elequ1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤 ) ) | |
| 4 | 3 | equsalvw | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ↔ 𝑥 ∈ 𝑤 ) |
| 5 | 2 4 | sylib | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → 𝑥 ∈ 𝑤 ) |
| 6 | 3 | equsexvw | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 ∈ 𝑤 ) ↔ 𝑥 ∈ 𝑤 ) |
| 7 | exsimpr | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ 𝑦 ∈ 𝑤 ) → ∃ 𝑦 𝑦 ∈ 𝑤 ) | |
| 8 | 6 7 | sylbir | ⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 𝑦 ∈ 𝑤 ) |
| 9 | ax-reg | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝑤 → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) ) |
| 11 | elequ1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 12 | elequ1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤 ) ) | |
| 13 | 12 | notbid | ⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 ∈ 𝑤 ↔ ¬ 𝑥 ∈ 𝑤 ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ↔ ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
| 15 | 14 | spvv | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) → ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) ) |
| 16 | con2 | ⊢ ( ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) → ( 𝑥 ∈ 𝑤 → ¬ 𝑥 ∈ 𝑦 ) ) | |
| 17 | 16 | com12 | ⊢ ( 𝑥 ∈ 𝑤 → ( ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) → ¬ 𝑥 ∈ 𝑦 ) ) |
| 18 | 17 | anim2d | ⊢ ( 𝑥 ∈ 𝑤 → ( ( 𝑦 ∈ 𝑤 ∧ ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤 ) ) → ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 19 | 15 18 | sylan2i | ⊢ ( 𝑥 ∈ 𝑤 → ( ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) → ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 20 | 19 | eximdv | ⊢ ( 𝑥 ∈ 𝑤 → ( ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤 ) ) → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 21 | 10 20 | mpd | ⊢ ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) |
| 22 | 19.29 | ⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑦 ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) | |
| 23 | biimp | ⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( 𝑦 ∈ 𝑤 → 𝑦 = 𝑥 ) ) | |
| 24 | 23 | anim1d | ⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) → ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 25 | ax9v2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) | |
| 26 | 25 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) |
| 27 | 26 | con3dimp | ⊢ ( ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝑦 ) → ¬ 𝑥 ∈ 𝑥 ) |
| 28 | 24 27 | syl6 | ⊢ ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ( ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) → ¬ 𝑥 ∈ 𝑥 ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ 𝑥 ) |
| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑦 ( ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ 𝑥 ) |
| 31 | 22 30 | syl | ⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ 𝑥 ) |
| 32 | 21 31 | sylan2 | ⊢ ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) ∧ 𝑥 ∈ 𝑤 ) → ¬ 𝑥 ∈ 𝑥 ) |
| 33 | 5 32 | mpdan | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝑥 ) |
| 34 | el | ⊢ ∃ 𝑤 𝑥 ∈ 𝑤 | |
| 35 | 4 | biimpri | ⊢ ( 𝑥 ∈ 𝑤 → ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) ) |
| 36 | 34 35 | eximii | ⊢ ∃ 𝑤 ∀ 𝑦 ( 𝑦 = 𝑥 → 𝑦 ∈ 𝑤 ) |
| 37 | 36 | sepexi | ⊢ ∃ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥 ) |
| 38 | 33 37 | exlimiiv | ⊢ ¬ 𝑥 ∈ 𝑥 |