This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (Proof shortened by Wolf Lammen, 18-Aug-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axregnd | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axregndlem2 | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
| 5 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 6 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
| 8 | nfcvf | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ) | |
| 9 | 8 | nfcrd | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
| 10 | 9 | adantr | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
| 11 | nfcvf | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑦 ) | |
| 12 | 11 | nfcrd | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑤 ∈ 𝑦 ) |
| 13 | 12 | nfnd | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 ¬ 𝑤 ∈ 𝑦 ) |
| 14 | 13 | adantl | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ¬ 𝑤 ∈ 𝑦 ) |
| 15 | 10 14 | nfimd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) |
| 16 | elequ1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 17 | elequ1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 18 | 17 | notbid | ⊢ ( 𝑤 = 𝑧 → ( ¬ 𝑤 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 20 | 19 | a1i | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 21 | 7 15 20 | cbvald | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 22 | 21 | anbi2d | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 23 | 4 22 | exbid | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 24 | 1 23 | imbitrid | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 25 | 24 | ex | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 26 | axregndlem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) | |
| 27 | 26 | aecoms | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 28 | 19.8a | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 𝑥 ∈ 𝑦 ) | |
| 29 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧 = 𝑦 | |
| 30 | elirrv | ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 31 | elequ2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑧 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 32 | 30 31 | mtbii | ⊢ ( 𝑧 = 𝑦 → ¬ 𝑧 ∈ 𝑦 ) |
| 33 | 32 | a1d | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 34 | 33 | alimi | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 35 | 34 | anim2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 36 | 35 | expcom | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 37 | 29 36 | eximd | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( ∃ 𝑥 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 38 | 28 37 | syl5 | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 39 | 25 27 38 | pm2.61ii | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |