This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axregndlem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a | ⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 𝑥 ∈ 𝑦 ) | |
| 2 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 | |
| 3 | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑧 | |
| 4 | elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 5 | elequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 6 | 4 5 | mtbii | ⊢ ( 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥 ) |
| 7 | 6 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥 ) |
| 8 | 7 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 9 | 3 8 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 10 | 9 | anim2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 11 | 10 | expcom | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 12 | 2 11 | eximd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 13 | 1 12 | syl5 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |