This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axgroth2 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-groth | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 2 | ssdomg | ⊢ ( 𝑦 ∈ V → ( 𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦 ) |
| 4 | 3 | biantrurd | ⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ↔ ( 𝑧 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧 ) ) ) |
| 5 | sbthb | ⊢ ( ( 𝑧 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧 ) ↔ 𝑧 ≈ 𝑦 ) | |
| 6 | 4 5 | bitrdi | ⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ↔ 𝑧 ≈ 𝑦 ) ) |
| 7 | 6 | orbi1d | ⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 8 | 7 | pm5.74i | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 10 | 9 | 3anbi3i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 12 | 1 11 | mpbir | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |