This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc . Using the full Axiom of Choice, we can construct a choice function g on ~P dom x . From this, we can build a sequence F starting at any value s e. dom x by repeatedly applying g to the set ( Fx ) (where x is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdclem2.1 | |- F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) |
|
| Assertion | axdclem2 | |- ( E. z s x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdclem2.1 | |- F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) |
|
| 2 | frfnom | |- ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) Fn _om |
|
| 3 | 1 | fneq1i | |- ( F Fn _om <-> ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) Fn _om ) |
| 4 | 2 3 | mpbir | |- F Fn _om |
| 5 | 4 | a1i | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> F Fn _om ) |
| 6 | omex | |- _om e. _V |
|
| 7 | 6 | a1i | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> _om e. _V ) |
| 8 | 5 7 | fnexd | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> F e. _V ) |
| 9 | fveq2 | |- ( n = (/) -> ( F ` n ) = ( F ` (/) ) ) |
|
| 10 | suceq | |- ( n = (/) -> suc n = suc (/) ) |
|
| 11 | 10 | fveq2d | |- ( n = (/) -> ( F ` suc n ) = ( F ` suc (/) ) ) |
| 12 | 9 11 | breq12d | |- ( n = (/) -> ( ( F ` n ) x ( F ` suc n ) <-> ( F ` (/) ) x ( F ` suc (/) ) ) ) |
| 13 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 14 | suceq | |- ( n = k -> suc n = suc k ) |
|
| 15 | 14 | fveq2d | |- ( n = k -> ( F ` suc n ) = ( F ` suc k ) ) |
| 16 | 13 15 | breq12d | |- ( n = k -> ( ( F ` n ) x ( F ` suc n ) <-> ( F ` k ) x ( F ` suc k ) ) ) |
| 17 | fveq2 | |- ( n = suc k -> ( F ` n ) = ( F ` suc k ) ) |
|
| 18 | suceq | |- ( n = suc k -> suc n = suc suc k ) |
|
| 19 | 18 | fveq2d | |- ( n = suc k -> ( F ` suc n ) = ( F ` suc suc k ) ) |
| 20 | 17 19 | breq12d | |- ( n = suc k -> ( ( F ` n ) x ( F ` suc n ) <-> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
| 21 | 1 | fveq1i | |- ( F ` (/) ) = ( ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) ` (/) ) |
| 22 | fr0g | |- ( s e. _V -> ( ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) ` (/) ) = s ) |
|
| 23 | 22 | elv | |- ( ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) ` (/) ) = s |
| 24 | 21 23 | eqtri | |- ( F ` (/) ) = s |
| 25 | 24 | breq1i | |- ( ( F ` (/) ) x z <-> s x z ) |
| 26 | 25 | biimpri | |- ( s x z -> ( F ` (/) ) x z ) |
| 27 | 26 | eximi | |- ( E. z s x z -> E. z ( F ` (/) ) x z ) |
| 28 | peano1 | |- (/) e. _om |
|
| 29 | 1 | axdclem | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` (/) ) x z ) -> ( (/) e. _om -> ( F ` (/) ) x ( F ` suc (/) ) ) ) |
| 30 | 28 29 | mpi | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` (/) ) x z ) -> ( F ` (/) ) x ( F ` suc (/) ) ) |
| 31 | 27 30 | syl3an3 | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z s x z ) -> ( F ` (/) ) x ( F ` suc (/) ) ) |
| 32 | 31 | 3com23 | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( F ` (/) ) x ( F ` suc (/) ) ) |
| 33 | fvex | |- ( F ` k ) e. _V |
|
| 34 | fvex | |- ( F ` suc k ) e. _V |
|
| 35 | 33 34 | brelrn | |- ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) e. ran x ) |
| 36 | ssel | |- ( ran x C_ dom x -> ( ( F ` suc k ) e. ran x -> ( F ` suc k ) e. dom x ) ) |
|
| 37 | 35 36 | syl5 | |- ( ran x C_ dom x -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) e. dom x ) ) |
| 38 | 34 | eldm | |- ( ( F ` suc k ) e. dom x <-> E. z ( F ` suc k ) x z ) |
| 39 | 37 38 | imbitrdi | |- ( ran x C_ dom x -> ( ( F ` k ) x ( F ` suc k ) -> E. z ( F ` suc k ) x z ) ) |
| 40 | 39 | ad2antll | |- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) ) -> ( ( F ` k ) x ( F ` suc k ) -> E. z ( F ` suc k ) x z ) ) |
| 41 | peano2 | |- ( k e. _om -> suc k e. _om ) |
|
| 42 | 1 | axdclem | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` suc k ) x z ) -> ( suc k e. _om -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
| 43 | 41 42 | syl5 | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` suc k ) x z ) -> ( k e. _om -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
| 44 | 43 | 3expia | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) -> ( E. z ( F ` suc k ) x z -> ( k e. _om -> ( F ` suc k ) x ( F ` suc suc k ) ) ) ) |
| 45 | 44 | com3r | |- ( k e. _om -> ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) -> ( E. z ( F ` suc k ) x z -> ( F ` suc k ) x ( F ` suc suc k ) ) ) ) |
| 46 | 45 | imp | |- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) ) -> ( E. z ( F ` suc k ) x z -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
| 47 | 40 46 | syld | |- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) ) -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
| 48 | 47 | 3adantr2 | |- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) ) -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
| 49 | 48 | ex | |- ( k e. _om -> ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) x ( F ` suc suc k ) ) ) ) |
| 50 | 12 16 20 32 49 | finds2 | |- ( n e. _om -> ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( F ` n ) x ( F ` suc n ) ) ) |
| 51 | 50 | com12 | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( n e. _om -> ( F ` n ) x ( F ` suc n ) ) ) |
| 52 | 51 | ralrimiv | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> A. n e. _om ( F ` n ) x ( F ` suc n ) ) |
| 53 | fveq1 | |- ( f = F -> ( f ` n ) = ( F ` n ) ) |
|
| 54 | fveq1 | |- ( f = F -> ( f ` suc n ) = ( F ` suc n ) ) |
|
| 55 | 53 54 | breq12d | |- ( f = F -> ( ( f ` n ) x ( f ` suc n ) <-> ( F ` n ) x ( F ` suc n ) ) ) |
| 56 | 55 | ralbidv | |- ( f = F -> ( A. n e. _om ( f ` n ) x ( f ` suc n ) <-> A. n e. _om ( F ` n ) x ( F ` suc n ) ) ) |
| 57 | 8 52 56 | spcedv | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |
| 58 | 57 | 3exp | |- ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( E. z s x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) ) |
| 59 | vex | |- x e. _V |
|
| 60 | 59 | dmex | |- dom x e. _V |
| 61 | 60 | pwex | |- ~P dom x e. _V |
| 62 | 61 | ac4c | |- E. g A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) |
| 63 | 58 62 | exlimiiv | |- ( E. z s x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |