This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of distinct atoms is zero. ( atnemeq0 analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnem0.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| atnem0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| atnem0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atnem0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnem0.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 2 | atnem0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 3 | atnem0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | 4 3 | atncmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑄 ↔ 𝑃 ≠ 𝑄 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 7 | 6 3 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 8 | 6 4 1 2 3 | atnle | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |
| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |
| 10 | 5 9 | bitr3d | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |