This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." ( atnssm0 analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnle.b | |- B = ( Base ` K ) |
|
| atnle.l | |- .<_ = ( le ` K ) |
||
| atnle.m | |- ./\ = ( meet ` K ) |
||
| atnle.z | |- .0. = ( 0. ` K ) |
||
| atnle.a | |- A = ( Atoms ` K ) |
||
| Assertion | atnle | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( -. P .<_ X <-> ( P ./\ X ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnle.b | |- B = ( Base ` K ) |
|
| 2 | atnle.l | |- .<_ = ( le ` K ) |
|
| 3 | atnle.m | |- ./\ = ( meet ` K ) |
|
| 4 | atnle.z | |- .0. = ( 0. ` K ) |
|
| 5 | atnle.a | |- A = ( Atoms ` K ) |
|
| 6 | simpl1 | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) -> K e. AtLat ) |
|
| 7 | atllat | |- ( K e. AtLat -> K e. Lat ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> K e. Lat ) |
| 9 | 1 5 | atbase | |- ( P e. A -> P e. B ) |
| 10 | 9 | 3ad2ant2 | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> P e. B ) |
| 11 | simp3 | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> X e. B ) |
|
| 12 | 1 3 | latmcl | |- ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P ./\ X ) e. B ) |
| 13 | 8 10 11 12 | syl3anc | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( P ./\ X ) e. B ) |
| 14 | 13 | adantr | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) -> ( P ./\ X ) e. B ) |
| 15 | simpr | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) -> ( P ./\ X ) =/= .0. ) |
|
| 16 | 1 2 4 5 | atlex | |- ( ( K e. AtLat /\ ( P ./\ X ) e. B /\ ( P ./\ X ) =/= .0. ) -> E. y e. A y .<_ ( P ./\ X ) ) |
| 17 | 6 14 15 16 | syl3anc | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) -> E. y e. A y .<_ ( P ./\ X ) ) |
| 18 | simpl1 | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> K e. AtLat ) |
|
| 19 | 18 7 | syl | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> K e. Lat ) |
| 20 | 1 5 | atbase | |- ( y e. A -> y e. B ) |
| 21 | 20 | adantl | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> y e. B ) |
| 22 | simpl2 | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> P e. A ) |
|
| 23 | 22 9 | syl | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> P e. B ) |
| 24 | simpl3 | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> X e. B ) |
|
| 25 | 1 2 3 | latlem12 | |- ( ( K e. Lat /\ ( y e. B /\ P e. B /\ X e. B ) ) -> ( ( y .<_ P /\ y .<_ X ) <-> y .<_ ( P ./\ X ) ) ) |
| 26 | 19 21 23 24 25 | syl13anc | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> ( ( y .<_ P /\ y .<_ X ) <-> y .<_ ( P ./\ X ) ) ) |
| 27 | simpr | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> y e. A ) |
|
| 28 | 2 5 | atcmp | |- ( ( K e. AtLat /\ y e. A /\ P e. A ) -> ( y .<_ P <-> y = P ) ) |
| 29 | 18 27 22 28 | syl3anc | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> ( y .<_ P <-> y = P ) ) |
| 30 | breq1 | |- ( y = P -> ( y .<_ X <-> P .<_ X ) ) |
|
| 31 | 30 | biimpd | |- ( y = P -> ( y .<_ X -> P .<_ X ) ) |
| 32 | 29 31 | biimtrdi | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> ( y .<_ P -> ( y .<_ X -> P .<_ X ) ) ) |
| 33 | 32 | impd | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> ( ( y .<_ P /\ y .<_ X ) -> P .<_ X ) ) |
| 34 | 26 33 | sylbird | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ y e. A ) -> ( y .<_ ( P ./\ X ) -> P .<_ X ) ) |
| 35 | 34 | adantlr | |- ( ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) /\ y e. A ) -> ( y .<_ ( P ./\ X ) -> P .<_ X ) ) |
| 36 | 35 | rexlimdva | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) -> ( E. y e. A y .<_ ( P ./\ X ) -> P .<_ X ) ) |
| 37 | 17 36 | mpd | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) =/= .0. ) -> P .<_ X ) |
| 38 | 37 | ex | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( ( P ./\ X ) =/= .0. -> P .<_ X ) ) |
| 39 | 38 | necon1bd | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( -. P .<_ X -> ( P ./\ X ) = .0. ) ) |
| 40 | 4 5 | atn0 | |- ( ( K e. AtLat /\ P e. A ) -> P =/= .0. ) |
| 41 | 40 | 3adant3 | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> P =/= .0. ) |
| 42 | 1 2 3 | latleeqm1 | |- ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P .<_ X <-> ( P ./\ X ) = P ) ) |
| 43 | 8 10 11 42 | syl3anc | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( P .<_ X <-> ( P ./\ X ) = P ) ) |
| 44 | 43 | adantr | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ X <-> ( P ./\ X ) = P ) ) |
| 45 | eqeq1 | |- ( ( P ./\ X ) = P -> ( ( P ./\ X ) = .0. <-> P = .0. ) ) |
|
| 46 | 45 | biimpcd | |- ( ( P ./\ X ) = .0. -> ( ( P ./\ X ) = P -> P = .0. ) ) |
| 47 | 46 | adantl | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( ( P ./\ X ) = P -> P = .0. ) ) |
| 48 | 44 47 | sylbid | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ X -> P = .0. ) ) |
| 49 | 48 | necon3ad | |- ( ( ( K e. AtLat /\ P e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P =/= .0. -> -. P .<_ X ) ) |
| 50 | 49 | ex | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( ( P ./\ X ) = .0. -> ( P =/= .0. -> -. P .<_ X ) ) ) |
| 51 | 41 50 | mpid | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( ( P ./\ X ) = .0. -> -. P .<_ X ) ) |
| 52 | 39 51 | impbid | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( -. P .<_ X <-> ( P ./\ X ) = .0. ) ) |