This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in MegPav2000 p. 2345 (PDF p. 8) (use atnemeq0 to obtain atom inequality). (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atexch | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atelch | ⊢ ( 𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) | |
| 2 | chub2 | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 7 | cvp | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 8 | atelch | ⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
| 9 | chjcl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
| 11 | cvpss | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 13 | 7 12 | sylbid | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 15 | 14 | adantld | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 16 | id | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Cℋ ) | |
| 17 | chub1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 19 | 18 | a1d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 20 | 19 | ancrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 21 | chjcl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) | |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) |
| 23 | chlub | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) → ( ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) | |
| 24 | 22 23 | syld3an3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 25 | 20 24 | sylibd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 26 | 16 8 1 25 | syl3an | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 27 | 26 | adantrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 28 | 15 27 | jcad | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 30 | simp1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ∈ Cℋ ) | |
| 31 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
| 32 | 30 22 31 | 3jca | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) ) |
| 33 | 16 8 1 32 | syl3an | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) ) |
| 34 | 14 26 | anim12d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 35 | 34 | ancomsd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 36 | psssstr | ⊢ ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐶 ) ) | |
| 37 | 35 36 | syl6 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 38 | chcv2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐶 ) ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) | |
| 39 | 38 | 3adant2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐶 ) ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 40 | 37 39 | sylibd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 41 | cvnbtwn2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) → ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐶 ) ) ) ) | |
| 42 | 33 40 41 | sylsyld | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 43 | 42 | imp | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) → ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 44 | 29 43 | mpd | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐶 ) ) |
| 45 | 6 44 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 46 | 45 | ex | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |