This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atcvat3.1 | |- A e. CH |
|
| Assertion | atcvat4i | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcvat3.1 | |- A e. CH |
|
| 2 | 1 | hatomici | |- ( A =/= 0H -> E. x e. HAtoms x C_ A ) |
| 3 | atelch | |- ( C e. HAtoms -> C e. CH ) |
|
| 4 | atelch | |- ( x e. HAtoms -> x e. CH ) |
|
| 5 | chub1 | |- ( ( C e. CH /\ x e. CH ) -> C C_ ( C vH x ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( C e. HAtoms /\ x e. HAtoms ) -> C C_ ( C vH x ) ) |
| 7 | sseq1 | |- ( B = C -> ( B C_ ( C vH x ) <-> C C_ ( C vH x ) ) ) |
|
| 8 | 6 7 | imbitrrid | |- ( B = C -> ( ( C e. HAtoms /\ x e. HAtoms ) -> B C_ ( C vH x ) ) ) |
| 9 | 8 | expd | |- ( B = C -> ( C e. HAtoms -> ( x e. HAtoms -> B C_ ( C vH x ) ) ) ) |
| 10 | 9 | impcom | |- ( ( C e. HAtoms /\ B = C ) -> ( x e. HAtoms -> B C_ ( C vH x ) ) ) |
| 11 | 10 | anim2d | |- ( ( C e. HAtoms /\ B = C ) -> ( ( x C_ A /\ x e. HAtoms ) -> ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 12 | 11 | expcomd | |- ( ( C e. HAtoms /\ B = C ) -> ( x e. HAtoms -> ( x C_ A -> ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 13 | 12 | reximdvai | |- ( ( C e. HAtoms /\ B = C ) -> ( E. x e. HAtoms x C_ A -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 14 | 2 13 | syl5 | |- ( ( C e. HAtoms /\ B = C ) -> ( A =/= 0H -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 15 | 14 | ex | |- ( C e. HAtoms -> ( B = C -> ( A =/= 0H -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 16 | 15 | a1i | |- ( B C_ ( A vH C ) -> ( C e. HAtoms -> ( B = C -> ( A =/= 0H -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) ) |
| 17 | 16 | com4l | |- ( C e. HAtoms -> ( B = C -> ( A =/= 0H -> ( B C_ ( A vH C ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) ) |
| 18 | 17 | imp4a | |- ( C e. HAtoms -> ( B = C -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 19 | 18 | adantl | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B = C -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 20 | atelch | |- ( B e. HAtoms -> B e. CH ) |
|
| 21 | chlejb2 | |- ( ( C e. CH /\ A e. CH ) -> ( C C_ A <-> ( A vH C ) = A ) ) |
|
| 22 | 1 21 | mpan2 | |- ( C e. CH -> ( C C_ A <-> ( A vH C ) = A ) ) |
| 23 | 22 | biimpa | |- ( ( C e. CH /\ C C_ A ) -> ( A vH C ) = A ) |
| 24 | 23 | sseq2d | |- ( ( C e. CH /\ C C_ A ) -> ( B C_ ( A vH C ) <-> B C_ A ) ) |
| 25 | 24 | biimpa | |- ( ( ( C e. CH /\ C C_ A ) /\ B C_ ( A vH C ) ) -> B C_ A ) |
| 26 | 25 | expl | |- ( C e. CH -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> B C_ A ) ) |
| 27 | 26 | adantl | |- ( ( B e. CH /\ C e. CH ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> B C_ A ) ) |
| 28 | chub2 | |- ( ( B e. CH /\ C e. CH ) -> B C_ ( C vH B ) ) |
|
| 29 | 27 28 | jctird | |- ( ( B e. CH /\ C e. CH ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 30 | 20 3 29 | syl2an | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 31 | simpl | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> B e. HAtoms ) |
|
| 32 | 30 31 | jctild | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> ( B e. HAtoms /\ ( B C_ A /\ B C_ ( C vH B ) ) ) ) ) |
| 33 | 32 | impl | |- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ C C_ A ) /\ B C_ ( A vH C ) ) -> ( B e. HAtoms /\ ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 34 | sseq1 | |- ( x = B -> ( x C_ A <-> B C_ A ) ) |
|
| 35 | oveq2 | |- ( x = B -> ( C vH x ) = ( C vH B ) ) |
|
| 36 | 35 | sseq2d | |- ( x = B -> ( B C_ ( C vH x ) <-> B C_ ( C vH B ) ) ) |
| 37 | 34 36 | anbi12d | |- ( x = B -> ( ( x C_ A /\ B C_ ( C vH x ) ) <-> ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 38 | 37 | rspcev | |- ( ( B e. HAtoms /\ ( B C_ A /\ B C_ ( C vH B ) ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 39 | 33 38 | syl | |- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ C C_ A ) /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 40 | 39 | adantrl | |- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ C C_ A ) /\ ( A =/= 0H /\ B C_ ( A vH C ) ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 41 | 40 | exp31 | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( C C_ A -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 42 | simpr | |- ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> B C_ ( A vH C ) ) |
|
| 43 | ioran | |- ( -. ( B = C \/ C C_ A ) <-> ( -. B = C /\ -. C C_ A ) ) |
|
| 44 | 1 | atcvat3i | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 45 | 3 | ad2antlr | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> C e. CH ) |
| 46 | 44 | imp | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) |
| 47 | simpll | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> B e. HAtoms ) |
|
| 48 | 45 46 47 | 3jca | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( C e. CH /\ ( A i^i ( B vH C ) ) e. HAtoms /\ B e. HAtoms ) ) |
| 49 | inss2 | |- ( A i^i ( B vH C ) ) C_ ( B vH C ) |
|
| 50 | chjcom | |- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) = ( C vH B ) ) |
|
| 51 | 20 3 50 | syl2an | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B vH C ) = ( C vH B ) ) |
| 52 | 49 51 | sseqtrid | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A i^i ( B vH C ) ) C_ ( C vH B ) ) |
| 53 | 52 | adantr | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( A i^i ( B vH C ) ) C_ ( C vH B ) ) |
| 54 | atnssm0 | |- ( ( A e. CH /\ C e. HAtoms ) -> ( -. C C_ A <-> ( A i^i C ) = 0H ) ) |
|
| 55 | 1 54 | mpan | |- ( C e. HAtoms -> ( -. C C_ A <-> ( A i^i C ) = 0H ) ) |
| 56 | 55 | adantl | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. C C_ A <-> ( A i^i C ) = 0H ) ) |
| 57 | inss1 | |- ( A i^i ( B vH C ) ) C_ A |
|
| 58 | sslin | |- ( ( A i^i ( B vH C ) ) C_ A -> ( C i^i ( A i^i ( B vH C ) ) ) C_ ( C i^i A ) ) |
|
| 59 | 57 58 | ax-mp | |- ( C i^i ( A i^i ( B vH C ) ) ) C_ ( C i^i A ) |
| 60 | incom | |- ( C i^i A ) = ( A i^i C ) |
|
| 61 | 59 60 | sseqtri | |- ( C i^i ( A i^i ( B vH C ) ) ) C_ ( A i^i C ) |
| 62 | sseq2 | |- ( ( A i^i C ) = 0H -> ( ( C i^i ( A i^i ( B vH C ) ) ) C_ ( A i^i C ) <-> ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H ) ) |
|
| 63 | 61 62 | mpbii | |- ( ( A i^i C ) = 0H -> ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H ) |
| 64 | simpr | |- ( ( B e. CH /\ C e. CH ) -> C e. CH ) |
|
| 65 | chjcl | |- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
|
| 66 | chincl | |- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
|
| 67 | 1 65 66 | sylancr | |- ( ( B e. CH /\ C e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 68 | chincl | |- ( ( C e. CH /\ ( A i^i ( B vH C ) ) e. CH ) -> ( C i^i ( A i^i ( B vH C ) ) ) e. CH ) |
|
| 69 | 64 67 68 | syl2anc | |- ( ( B e. CH /\ C e. CH ) -> ( C i^i ( A i^i ( B vH C ) ) ) e. CH ) |
| 70 | 20 3 69 | syl2an | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( C i^i ( A i^i ( B vH C ) ) ) e. CH ) |
| 71 | chle0 | |- ( ( C i^i ( A i^i ( B vH C ) ) ) e. CH -> ( ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H <-> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
|
| 72 | 70 71 | syl | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H <-> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 73 | 63 72 | imbitrid | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i C ) = 0H -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 74 | 56 73 | sylbid | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. C C_ A -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 75 | 74 | imp | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. C C_ A ) -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) |
| 76 | 75 | adantrl | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. B = C /\ -. C C_ A ) ) -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) |
| 77 | 76 | adantrr | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) |
| 78 | 53 77 | jca | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( ( A i^i ( B vH C ) ) C_ ( C vH B ) /\ ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 79 | atexch | |- ( ( C e. CH /\ ( A i^i ( B vH C ) ) e. HAtoms /\ B e. HAtoms ) -> ( ( ( A i^i ( B vH C ) ) C_ ( C vH B ) /\ ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) -> B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) |
|
| 80 | 48 78 79 | sylc | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> B C_ ( C vH ( A i^i ( B vH C ) ) ) ) |
| 81 | 80 57 | jctil | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) |
| 82 | 81 | ex | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) ) |
| 83 | 44 82 | jcad | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( ( A i^i ( B vH C ) ) e. HAtoms /\ ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) ) ) |
| 84 | sseq1 | |- ( x = ( A i^i ( B vH C ) ) -> ( x C_ A <-> ( A i^i ( B vH C ) ) C_ A ) ) |
|
| 85 | oveq2 | |- ( x = ( A i^i ( B vH C ) ) -> ( C vH x ) = ( C vH ( A i^i ( B vH C ) ) ) ) |
|
| 86 | 85 | sseq2d | |- ( x = ( A i^i ( B vH C ) ) -> ( B C_ ( C vH x ) <-> B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) |
| 87 | 84 86 | anbi12d | |- ( x = ( A i^i ( B vH C ) ) -> ( ( x C_ A /\ B C_ ( C vH x ) ) <-> ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) ) |
| 88 | 87 | rspcev | |- ( ( ( A i^i ( B vH C ) ) e. HAtoms /\ ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 89 | 83 88 | syl6 | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 90 | 89 | expd | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ -. C C_ A ) -> ( B C_ ( A vH C ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 91 | 43 90 | biimtrid | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. ( B = C \/ C C_ A ) -> ( B C_ ( A vH C ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 92 | 42 91 | syl7 | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. ( B = C \/ C C_ A ) -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 93 | 19 41 92 | ecase3d | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |