This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chjcom | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ Sℋ ) | |
| 2 | chsh | ⊢ ( 𝐵 ∈ Cℋ → 𝐵 ∈ Sℋ ) | |
| 3 | shjcom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |