This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of MaedaMaeda p. 31. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atdmd | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvp | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐵 ⋖ℋ ( 𝐵 ∨ℋ 𝐴 ) ) ) | |
| 2 | atelch | ⊢ ( 𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | |
| 3 | chjcom | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 5 | 4 | breq2d | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( 𝐵 ⋖ℋ ( 𝐵 ∨ℋ 𝐴 ) ↔ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 6 | 1 5 | bitrd | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 8 | cvdmd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → 𝐴 𝑀ℋ* 𝐵 ) | |
| 9 | 8 | 3expia | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) ) |
| 10 | 2 9 | sylan | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) ) |
| 11 | 7 10 | sylbid | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ → 𝐴 𝑀ℋ* 𝐵 ) ) |
| 12 | atnssm0 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) ) |
| 14 | 13 | con1bid | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ¬ ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐴 ⊆ 𝐵 ) ) |
| 15 | ssdmd1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) | |
| 16 | 15 | 3expia | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) ) |
| 17 | 2 16 | sylan | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) ) |
| 18 | 14 17 | sylbid | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ¬ ( 𝐵 ∩ 𝐴 ) = 0ℋ → 𝐴 𝑀ℋ* 𝐵 ) ) |
| 19 | 11 18 | pm2.61d | ⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵 ) |