This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a 3rd atom R on a line P .\/ Q intersecting element X at P . (Contributed by NM, 30-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atbtwn.b | |- B = ( Base ` K ) |
|
| atbtwn.l | |- .<_ = ( le ` K ) |
||
| atbtwn.j | |- .\/ = ( join ` K ) |
||
| atbtwn.a | |- A = ( Atoms ` K ) |
||
| Assertion | atbtwn | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R =/= P <-> -. R .<_ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atbtwn.b | |- B = ( Base ` K ) |
|
| 2 | atbtwn.l | |- .<_ = ( le ` K ) |
|
| 3 | atbtwn.j | |- .\/ = ( join ` K ) |
|
| 4 | atbtwn.a | |- A = ( Atoms ` K ) |
|
| 5 | simpl33 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ ( P .\/ Q ) ) |
|
| 6 | simpr | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ X ) |
|
| 7 | simpl11 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> K e. HL ) |
|
| 8 | 7 | hllatd | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> K e. Lat ) |
| 9 | simpl2l | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R e. A ) |
|
| 10 | 1 4 | atbase | |- ( R e. A -> R e. B ) |
| 11 | 9 10 | syl | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R e. B ) |
| 12 | simpl1 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
|
| 13 | 1 3 4 | hlatjcl | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
| 14 | 12 13 | syl | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( P .\/ Q ) e. B ) |
| 15 | simpl2r | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> X e. B ) |
|
| 16 | eqid | |- ( meet ` K ) = ( meet ` K ) |
|
| 17 | 1 2 16 | latlem12 | |- ( ( K e. Lat /\ ( R e. B /\ ( P .\/ Q ) e. B /\ X e. B ) ) -> ( ( R .<_ ( P .\/ Q ) /\ R .<_ X ) <-> R .<_ ( ( P .\/ Q ) ( meet ` K ) X ) ) ) |
| 18 | 8 11 14 15 17 | syl13anc | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( ( R .<_ ( P .\/ Q ) /\ R .<_ X ) <-> R .<_ ( ( P .\/ Q ) ( meet ` K ) X ) ) ) |
| 19 | 5 6 18 | mpbi2and | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ ( ( P .\/ Q ) ( meet ` K ) X ) ) |
| 20 | simpl12 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> P e. A ) |
|
| 21 | simpl13 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> Q e. A ) |
|
| 22 | simpl31 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> P .<_ X ) |
|
| 23 | simpl32 | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> -. Q .<_ X ) |
|
| 24 | 1 2 3 16 4 | 2atjm | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) = P ) |
| 25 | 7 20 21 15 22 23 24 | syl132anc | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( ( P .\/ Q ) ( meet ` K ) X ) = P ) |
| 26 | 19 25 | breqtrd | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ P ) |
| 27 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 28 | 7 27 | syl | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> K e. AtLat ) |
| 29 | 2 4 | atcmp | |- ( ( K e. AtLat /\ R e. A /\ P e. A ) -> ( R .<_ P <-> R = P ) ) |
| 30 | 28 9 20 29 | syl3anc | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( R .<_ P <-> R = P ) ) |
| 31 | 26 30 | mpbid | |- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R = P ) |
| 32 | 31 | ex | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R .<_ X -> R = P ) ) |
| 33 | 32 | necon3ad | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R =/= P -> -. R .<_ X ) ) |
| 34 | simp31 | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> P .<_ X ) |
|
| 35 | nbrne2 | |- ( ( P .<_ X /\ -. R .<_ X ) -> P =/= R ) |
|
| 36 | 35 | necomd | |- ( ( P .<_ X /\ -. R .<_ X ) -> R =/= P ) |
| 37 | 36 | ex | |- ( P .<_ X -> ( -. R .<_ X -> R =/= P ) ) |
| 38 | 34 37 | syl | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( -. R .<_ X -> R =/= P ) ) |
| 39 | 33 38 | impbid | |- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R =/= P <-> -. R .<_ X ) ) |