This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem simpl33

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpl33 ( ( ( 𝜃𝜏 ∧ ( 𝜑𝜓𝜒 ) ) ∧ 𝜂 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simpl3 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜂 ) → 𝜒 )
2 1 3ad2antl3 ( ( ( 𝜃𝜏 ∧ ( 𝜑𝜓𝜒 ) ) ∧ 𝜂 ) → 𝜒 )