This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandmtan | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tancl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) |
|
| 2 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 3 | 2 | oveq1d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) ) |
| 4 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 5 | 4 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) |
| 6 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 7 | 6 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) |
| 8 | simpr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
|
| 9 | 5 7 8 | sqdivd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
| 10 | 3 9 | eqtrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
| 11 | 5 | sqcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 12 | 7 | sqcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 13 | 12 | negcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( cos ` A ) ^ 2 ) e. CC ) |
| 14 | 11 12 | subnegd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 15 | sincossq | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
|
| 16 | 15 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 17 | 14 16 | eqtrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 18 | ax-1ne0 | |- 1 =/= 0 |
|
| 19 | 18 | a1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 1 =/= 0 ) |
| 20 | 17 19 | eqnetrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) =/= 0 ) |
| 21 | 11 13 20 | subne0ad | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= -u ( ( cos ` A ) ^ 2 ) ) |
| 22 | 12 | mulm1d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) = -u ( ( cos ` A ) ^ 2 ) ) |
| 23 | 21 22 | neeqtrrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) |
| 24 | neg1cn | |- -u 1 e. CC |
|
| 25 | 24 | a1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u 1 e. CC ) |
| 26 | sqne0 | |- ( ( cos ` A ) e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) |
|
| 27 | 6 26 | syl | |- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) |
| 28 | 27 | biimpar | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) =/= 0 ) |
| 29 | 11 25 12 28 | divmul3d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = -u 1 <-> ( ( sin ` A ) ^ 2 ) = ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) ) |
| 30 | 29 | necon3bid | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) =/= -u 1 <-> ( ( sin ` A ) ^ 2 ) =/= ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) ) |
| 31 | 23 30 | mpbird | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) =/= -u 1 ) |
| 32 | 10 31 | eqnetrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) =/= -u 1 ) |
| 33 | atandm3 | |- ( ( tan ` A ) e. dom arctan <-> ( ( tan ` A ) e. CC /\ ( ( tan ` A ) ^ 2 ) =/= -u 1 ) ) |
|
| 34 | 1 32 33 | sylanbrc | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. dom arctan ) |