This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for asinsin . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinsinlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 𝐴 ∈ ℂ ) | |
| 3 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · 𝐴 ) ∈ ℂ ) |
| 5 | 4 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( i · 𝐴 ) ) ∈ ℝ ) |
| 6 | 5 | reefcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 8 | neghalfpirx | ⊢ - ( π / 2 ) ∈ ℝ* | |
| 9 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 10 | 9 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 11 | elioo2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) ) | |
| 12 | 8 10 11 | mp2an | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 13 | 7 12 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 14 | 13 | simp1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 15 | 14 | recoscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 16 | efgt0 | ⊢ ( ( ℜ ‘ ( i · 𝐴 ) ) ∈ ℝ → 0 < ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ) | |
| 17 | 5 16 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ) |
| 18 | cosq14gt0 | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 20 | 6 15 17 19 | mulgt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
| 21 | efeul | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) ) | |
| 22 | 4 21 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · 𝐴 ) ) = ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ℜ ‘ ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) ) ) |
| 24 | 4 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( i · 𝐴 ) ) ∈ ℝ ) |
| 25 | 24 | recoscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 27 | 24 | resincld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 28 | 27 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 29 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ∈ ℂ ) → ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ∈ ℂ ) | |
| 30 | 1 28 29 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 31 | 26 30 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 32 | 6 31 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) ) ) |
| 33 | 25 27 | crred | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) = ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 34 | imre | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) ) | |
| 35 | 4 34 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) ) |
| 36 | 1 1 | mulneg1i | ⊢ ( - i · i ) = - ( i · i ) |
| 37 | ixi | ⊢ ( i · i ) = - 1 | |
| 38 | 37 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 39 | negneg1e1 | ⊢ - - 1 = 1 | |
| 40 | 36 38 39 | 3eqtri | ⊢ ( - i · i ) = 1 |
| 41 | 40 | oveq1i | ⊢ ( ( - i · i ) · 𝐴 ) = ( 1 · 𝐴 ) |
| 42 | negicn | ⊢ - i ∈ ℂ | |
| 43 | 42 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - i ∈ ℂ ) |
| 44 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → i ∈ ℂ ) |
| 45 | 43 44 2 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
| 46 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 47 | 46 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 48 | 41 45 47 | 3eqtr3a | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 50 | 35 49 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) = ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 52 | 33 51 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) = ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 53 | 52 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( ℜ ‘ ( ( cos ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) + ( i · ( sin ‘ ( ℑ ‘ ( i · 𝐴 ) ) ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
| 54 | 23 32 53 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) · ( cos ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
| 55 | 20 54 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |